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Abstract

Thorny-headed worms (Acanthocephala) are endoparasites exploiting Mandibulata (Arthro-

poda) and Gnathostomata (Vertebrata). Despite their world-wide occurrence and economic

relevance as a pest, genome and transcriptome assemblies have not been published

before. However, such data might hold clues for a sustainable control of acanthocephalans

in animal production. For this reason, we present the first draft of an acanthocephalan

nuclear genome, besides the mitochondrial one, using the fish parasite Pomphorhynchus

laevis (Palaeacanthocephala) as a model. Additionally, we have assembled and annotated

the transcriptome of this species and the proteins encoded. A hybrid assembly of long and

short reads resulted in a near-complete P. laevis draft genome of ca. 260 Mb, comprising a

large repetitive portion of ca. 63%. Numbers of transcripts and translated proteins (35,683)

were within the range of other members of the Rotifera-Acanthocephala clade. Our data

additionally demonstrate a significant reorganization of the acanthocephalan gene reper-

toire. Thus, more than 20% of the usually conserved metazoan genes were lacking in P. lae-

vis. Ontology analysis of the retained genes revealed many connections to the incorporation

of carotinoids. These are probably taken up via the surface together with lipids, thus

accounting for the orange coloration of P. laevis. Furthermore, we found transcripts and pro-

tein sequences to be more derived in P. laevis than in rotifers from Monogononta and Bdel-

loidea. This was especially the case in genes involved in energy metabolism, which might

reflect the acanthocephalan ability to use the scarce oxygen in the host intestine for respira-

tion and simultaneously carry out fermentation. Increased plasticity of the gene repertoire

through the integration of foreign DNA into the nuclear genome seems to be another under-

pinning factor of the evolutionary success of acanthocephalans. In any case, energy-related

genes and their proteins may be considered as candidate targets for the acanthocephalan

control.
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Introduction

Acanthocephala (thorny-headed worms) are endoparasites of jaw-bearing vertebrates

(Gnathostomata) including humans [1–4]. In their digestive tract, the worms usually grow to

adults of several millimeters to a few centimeters in length, followed by heterosexual reproduc-

tion. Upon insemination, the female produces large quantities of eggs containing a larval stage

(acanthor). The eggs are released into the environment with the host’s excrements [5] and sub-

sequently can be orally taken up by an intermediate host from Crustacea, Hexapoda or Myria-

poda [1,6]. Inside the intermediate host, the acanthor grows to a stage, which can infect the

definitive host, following oral uptake of an intermediate host [7]. Additional host types may

occur, but only the two-host cycle detailed above is obligatory [8].

Under unsuitable conditions acanthocephalans may penetrate the intestinal wall of their

vertebrate hosts, which can elicit fatal peritonitis [9]. These migrating worms also enter mesen-

teries and organs such as the liver, with serious consequences for the host’s health [10]. Even if

they remain in the digestive tract, thorny-head worms damage the host tissue through their

usually hook-bearing attachment organ, the proboscis [11,12]. In fact, the movements of the

proboscis induce bleeding, inflammatory reactions, necrosis, and lesions [13,14], which reduce

the host’s ability to absorb nutrients [13]. In addition, the gutless worms absorb minerals and

nutrients from the blood and decaying tissue via their surface [15–18]. Considering these det-

rimental effects, it may surprise that high loads with acanthocephalans can be tolerated [19].

However, if further stress factors are added acanthocephalans can significantly increase host

mortality [20]. Mass infections with up to ~1,500 thorny-headed worms per host can result in

the death of birds, fish, etc. due to intestinal obstruction [21].

Except in the wild, acanthocephalans occur worldwide in human livestock, including

domestic pigs (Sus scrofa domestica) and chickens (Gallus gallus domesticus) [16,22]. Further-

more, acanthocephalans quite regularly contribute to the parasite fauna in marine [23–25] and

freshwater aquaculture [26–29], which results in growth retardation, weakening, and emacia-

tion of fishes [30]. Thorny-headed worms are even regarded the main obstacle to successful

aquaculture in some regions [14,31–36]. Despite their importance as a pest, no nuclear

genome of an acanthocephalan has yet been published, nor have previous studies comprehen-

sively captured their transcriptome and proteome, including both sexes and developmental

stages. It is obvious that a better knowledge of the molecular basis of acanthocephalan pathoge-

nicity might provide starting points for the development of new drugs to control them. In fact,

due to their low specificity, the use of established anthelminthics poses risks for the environ-

ment and consumers [25,37–40], a deficit that the alternatives proposed so far do not over-

come [9,30,36,41].

The study of genome and transcriptome data additionally holds the prospect of elucidating

the molecular underpinnings of acanthocephalan evolution. This should be especially the case

since the phylogenetic relationships of Acanthocephala are clarified in decisive points. Thus, it

is generally accepted that thorny-headed worms and wheel animals or rotifers (Rotifera) are a

monophyletic group referred to as either Syndermata or Rotifera, then including Acanthoce-

phala [3,42–48]. Analyses of larger molecular datasets further revealed that rotifers in the tradi-

tional comprehension are paraphyletic. In particular, bdelloids are most probably more closely

related to the acanthocephalans than to monogononts [43,49–56]. However, the last common

ancestors (LCAs) of monogononts and bdelloids were probably free-living [57]. Thus, compar-

ions with genomic and transcriptopmic data from the latter two taxa should shed light on the

evolutionary changes in the acanthocephalan stem line. Along with the lifestyle, the acantho-

cephalan morphology underwent significant changes [2,3,45,50]. Examples for evolutionary

novelties are the aforementioned proboscis and the muscular apparatus moving it [11,12]. The
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absent alimentary tract and the exclusive uptake of nutrients via the tegumental surface should

be additional apomorphies of acanthocephalans [3,50,51,58]. In addition, the metasomal body

cavity is largely committed to the production of large amounts of gametes [59]. Archiacantho-

cephalan females might even shed 82,000 eggs per day on average, and this for a period of 10

months [5]. Thus, a single female might produce up to 25 million eggs. Male acanthocephalans

are also selected for high fertility, as illustrated by their enlarged testicles [60]. Consequently,

both sexes face basically the same challenge: Ensuring high energy supply in the oxygen-

depleted intestinal lumen of their vertebrate hosts [61,62]. However, the extent to which the

evolutionary changes in morphology and lifestyle left signatures in the genome and transcrip-

tome of Acanthocephala awaits clarification.

In addition, it is not clear whether the genome of acanthocephalans is more compact than

that of free-living rotifers, as is known from parasitic nematodes, mites and fungi and their

free-living relatives [63–66]. Another question to be clarified is if significant amounts of for-

eign DNA might have entered the acanthocephalan genome through horizontal gene transfer

(HGT). In fact, HGT has been reported for asexual bdelloids, but not for monogononts, which

sporadically reproduce sexually [67–71]. However, strict heterosexuals, such as acanthocepha-

lans [59], have not yet been included in the comparison. If HGT occurs in acanthocephalans, it

could increase their chances of adapting to the challenges of their specific lifestyle, as previ-

ously suggested for animal parasitizing nematodes [72,73], phytopathogenic nematodes

[63,74,75], and parasitic plants from Orobanchaceae [76].

The above questions are addressed in this study using the first assemblies of the nuclear

genome and transcriptome of an acanthocephalan. For doing so, we chose Pomphorhynchus
laevis (Zoega in Müller, 1776) Monticelli, 1905, as a model. The species belongs to the Palaea-

canthocephala, one of the acanthocephalan taxa with the traditional rank of a class

[53,56,77,78]. The species measures in the range of few centimeters and parasitizes gammarids

(Crustacea, Amphipoda) and ray-finned fishes [77,79,80]. Along with its hosts, P. laevis occurs

in Eurasian lakes and rivers, as well as in brackish waters of estuaries and the Baltic Sea. It was

also found together with anadromous and catadromous fish in the waters of the North Sea and

the White Sea [77,79,81–87], thus covering the entire range of aquatic habitats known for

Acanthocephala as a whole. Not least, P. laevis belongs to the best-studied acanthocephalan

species in terms of morphology, ecology, life history, and pathogenicity in aquaculture [8,88–

90].

Materials and methods

Samples

Specimens of P. laevis were excised from a common barbel (Barbus barbus), which was caught

in June 2006 near Gimbsheim (Germany), by a fisherman under license 16692 issued by Ver-

band Deutscher Sportfischer e. V. (VDSF). The fish was not caught for sampling but for con-

sumption. The material used here would otherwise have been discarded. DNA and RNA

samples were extracted from worms after they had freed themselves from impurities in physio-

logical saline solution.

DNA sequencing and preliminary assembling

Worms were decapitated and grinded, following digestion with proteinase K, DNA extraction

with phenol-chloroform-isoamyl alcohol and precipitation in ethanol. Upon centrifugation,

the pelleted DNA was washed in ethanol (70%) and eluted in HPLC grade H2O.

DNA of one P. laevis specimen was sequenced on two lanes on an Illumina HiSeq 2500 plat-

form (100 bp, paired end, 275,633,942 reads total) by StarSEQ (https://www.starseq.com/).
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The quality of the raw data was checked with FastQC v.0.11.5 (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) and processed with the FastX toolkit v. 0.0.13.2 (http://

hannonlab.cshl.edu/fastx_toolkit/). First, we assembled and annotated the mitochondrial P.

laevis genome from these trimmed Illumina reads (see Mitochondrial genome assembly).

Prior to assembling, we had removed mitochondrial genome and PhiX genomes with the

kmer filtering function in BBduk (https://sourceforge.net/projects/bbmap/). Potential

sequences of human (Homo sapiens) origin were deleted following their detection by mapping

against the masked human reference nuclear genome (HG19) with BBmap (https://

sourceforge.net/projects/bbmap/). Kept were 0.2% of the reads, which might have bacterial

origin according to MetaCache version 0.21 [91].

The DNA of ten specimens was used for the generation of long reads using PacBio RSII.
Two sequencing runs were carried out, with three and five SMARTcells, respectively (about

9kb insert length each, 1,091,760 reads total). We assembled the raw PacBio subreads with

Canu v1.0 [92]. Using cleaned Illumina reads of one lane (L002), the raw PacBio subreads

were error-corrected with Proovread version 2.14.0 [93]. The coverage of the Illumina reads

used for Proovread was 40x. All other parameters were as default. For further processing, we

used corrected and trimmed PacBio reads. The raw data have been deposited in the SRA data-

base under the accession nos. SRR10569073-SRR10569081 (BioProject: PRJNA554558).

Mitochondrial genome analysis

We built a consensus of the mitochondrial genome of P. laevis (GenBank accession no.

MN5624) from parallel reconstructions based on trimmed Illumina reads. We operated

MITObim [94] with a cytochrome oxidase subunit I (cox1) sequence of P. laevis (KF559296.1)

and the mitochondrial genome of a second palaeacanthocephalan, Leptorhynchus thecatus
(AY562383.1). The de novo assemblers CLC workbench 8.5.1 and Geneious R9.1 [95] were

run with about 5% of the Illumina reads. The assemblies were aligned with MUSCLE [96] for

manual derivation of a consensus sequence. This was first annotated with MITOS [97], fol-

lowed by validation of boundaries of protein-coding genes with NCBI ORF finder (https://

www.ncbi.nlm.nih.gov/orffinder/). Lastly, we employed DOGMA [98] and ARWEN [99] in

addition to MITOs for tRNA gene annotation. The same annotation pipeline was applied to

additional acanthocephalan mitochondrial genomes [56,78,100–104], as retrieved from Gen-

Bank: Palaeacanthocephala (Centrorhynchus aluconis: KT592357.1; Leptorhynchoides thecatus:
see above; Prosthorhynchus transversus: KT447549.1; Southwellina hispida: KJ869251.1), Eoa-

canthocephala (Hebesoma violentum: KC415004.1; Pallisentis celatus: JQ943583.1; Paratenui-
sentis ambiguus: FR856885.2), Polyacanthocephala (Polyacanthorhynchus caballeroi:
KT592358.1), and Archiacanthocephala (Macracanthorhynchus hirudinaceus: FR856886.2;

Oncicola luehei: JN710452.1).

De novo assembly of the nuclear genome

The size of the nuclear genome was estimated from k-mers (k = 21) using Jellyfish [105] and

GenomeScope [106]. Following this, we employed different programs in order to create a P.

laevis draft of the nuclear genome that was as coherent, complete, and of high quality as possi-

ble. This WGS project has been deposited at GenBank under accession WNNJ00000000, ver-

sion WNNJ01000000.

Long reads generated with PacBio technology were assembled with Canu v1.0 [92]. For

doing so, we used reads corrected with Proovread v.2.14.0 and specified 0.075 for “corrected

Error Rate” and 500 for “min Overlap Length”. In a parallel approach, we assembled the fil-

tered and trimmed reads from Illumina sequencing with Platanus v.1.2.4 [107]. The best
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Platanus assembly, selected according to the parameter N50 (k = 21; s = 2), and Proovread-cor-

rected PacBio reads were hybrid-assembled with DBG2OLC v.1.0 [108]. Subsequently, we

combined the Canu assembly (corrected PacBio) and DBG2OLC assembly (corrected PacBio

+Illumina) with Quickmerge [109]. We ran Quickmerge with stringent parameters for contig

merging (HCO 6, -C 2), with the Canu assembly as a reference or donor assembly. We then

employed the scaffolding function in PBJelly v.15.8.24 [110] to fill as many of the remaining

gaps between contigs with the long Proovread-corrected PacBio reads (nCandidates = 20).

Contigs of< 1,000 bp after PBJelly scaffolding were excluded from further processing. Finally,

the contigs were corrected with Proovread. For this correction step, the trimmed and filtered

Illumina reads of one lane (L002) were used again. The coverage of the Illumina reads was

given as 40x; all other parameters were as default. Illumina and PacBio reads were mapped to

the final draft genome using the mem algorithm of BWA v.0.7.15 [111].

We used BUSCO v.3.0.1 [112] to assess the completeness of the P. laevis nuclear genome

draft. From the alternatives tested, including gene models of the hexapod Drosophila melano-
gaster and the nematode Brugia malayi, Schistosoma mansoni (Platyhelminthes, Trematoda)

gene models allowed the detection of the highest number of genes by the prediction program

AUGUSTUS [113] implemented in BUSCO. Since the relaxation of the TBLASTN E-value or

the training of AUGUSTUS with P. laevis ESTs [50] did not lead to a significant improvement,

we finally applied S.mansoni gene models. For doing so, we operated BUSCO with standard

settings for E-value and activated the AUGUSTUS optimization mode for self-training. For

comparison, we used the same settings for re-analysis of the nuclear genome of the bdelloid A.

vaga [67].

To the best of our knowledge, no barbel genome or transcriptome was published at the

time of the study. Thus, to detect potential fish contamination, we compared all reconstructed

contigs to the closest phylogenetic relative of barbel, for which corresponding data was avail-

able, i.e. the common carp (Cyprinus carpio) (see [114] for a cyprinid phylogeny). For compar-

ison, we analyzed a custom database with genomic DNA and transcripts from BioProject

PRJNA352247, mitochondrial DNA (AP009047.1; [115]), and TSA data

(GFWU01000001-GFWU01049434) with NCBI BLAST+ [116] (MEGABLAST, E-value: 1e-

05; Ident: 85%). Given an average sequence divergence of approximately 15% between carp

and barbel (see Fig 1 in [114]), we considered BLAST hits of� 85% identity as indicative of

potential contamination. However, such hits in the reconstructed contigs could alternatively

represent highly conserved homologues or HGT candidates in the P. laevis nuclear genome.

We therefore kept such sections in the genome assembly, summarized the MEGABLAST

results in the supplements (S1 Table), and quantified their share to the nuclear genome

assembly.

Annotation of repetitive DNA and tRNA genes

We searched the P. laevis nuclear genome draft for tRNA genes with the program tRNAscan-

SE 2.0 [117] and annotated repeats with RepeatMasker version open-4.0.7 [118], specifying the

slow search option. For de novo generation of a custom database of P. laevis repeats, we ran

RepeatModeler [119] on the draft genome and dnaPipeTE [120] on all trimmed and filtered

Illumina Reads. As recommended [121], the best-fitting coverage depth (0.01) was initially

determined by parallel runs of dnaPipeTE (N = 50) with alternative settings (for details, see

S.3). Contigs with at least 90% identity were clustered with CD-HIT-EST [122]. Subsequently,

processed Illumina reads of one lane (L002) were mapped with the mem algorithm of BWA

v.0.7.15 to cluster-specific main sequences. We annotated clustered contigs of at least 100 bp

with TEclass [123], provided their coverage was at least three times as high as the minimum
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average genome coverage. To avoid the masking of duplicated protein-coding genes, which

were not derived from transposable elements, corresponding candidates were removed from

the repeat database. For this purpose, we excluded contigs showing BLASTX hits (E-value: 1e-

05) to the Swiss-Prot database (release 2018_10) [124], if the Swiss-Prot sequences lacked sig-

nificant matches in RepBaseRepeatMaskerEdition-20181026 (TBLASTN; E-value: 1e-05).

Finally, we added repeats from the RepBaseRepeatMaskerEdition-20181026 classified as root,

Metazoa, Protostomia, or Rotifera to the custom repeat database. Despite the measures taken

for avoidance, highly derived protein-coding sequences of P. laevis could have remained erro-

neously in the repeat database, thus overestimating the repetitive portion of the nuclear

genome. For assessing the extent to which this might have occurred, we analyzed how many

transcript reads mapped to the unmasked genome draft but not to the masked one (see RNA-

seq de novo assembly). This was done with GMAP version 2018-07-04 [125] using default

settings.

RNA sequencing (RNA-seq)

To cover as many transcripts as possible, we pooled RNAs of two females, two males, and two

juveniles. The respective P. laevis specimens were all collected from the same B. barbus indi-

vidual, from which the worms for DNA analysis were excised. For RNA extraction, we used

the TRI Reagent™ protocol (Invitrogen™). Pelleted RNA was resolved in HPLC grade H2O. Fol-

lowing poly-A capture and library construction, RNA-seq was carried out on an Illumina

NextSeq platform (150 bp, paired end, 37,016,182 reads total) by StarSEQ. The raw data have

been deposited in the SRA database under accession no. SRR10344638 (BioProject:

PRJNA554558). Following examination with FastQC v0.11.5, we trimmed the raw reads with

Trimmomatic v.0.36 [126]. Screening of the reads with MetaCache version 0.21 confirmed

high purity of the samples: only 0.4% of the reads were of potential bacterial origin.

De novo assembly of a reference transcriptome

This TSA project has been deposited at GenBank under accession GIBA00000000, version

GIBA01000000, following routine check by NCBI. We assembled the P. laevis transcriptome

from trimmed RNA-seq reads with the aid of Trinity v2.4.0 [127], using standard parameters,

except for omitting read normalization. BLAST+ hits (MEGABLAST, E-value: 1e-05) of Trin-

ity transcripts to NCBI’s Human genomic + transcript database (update date: 28.03.2018) led

to removal, when the identity to the matched human sequence was�90% and query coverage

exceeded 50%. Furthermore, we compared the transcripts to the custom C. carpio database

(see De novo genome assembly; S2 Table). Transcripts were mapped to the nuclear genome

draft of P. laevis to achieve an approximate map of the coding sequences. For this purpose, the

assembled mitochondrial P. laevis genome was added to the dataset. Transcript mapping was

done with GMAP version 2018-07-04. We translated the transcripts into proteins with Trans-

Decoder v5.2.0 [128]. Only single best proteins (per transcript) of at least 30 amino acids (aa)

were issued. The transcriptome-derived P. laevis proteome was checked with BUSCO v.3.0.1

for completeness.

Transcript annotation and analysis

We annotated the transcripts with the aid of the Trinotate v3.1.1 pipeline (https://github.com/

Trinotate/Trinotate.github.io/wiki), using various methods and databases. Thus, transcripts

and TransDecoder open reading frames (ORFs) of 30 codons or more were blasted against the

Swiss-Prot database (release 2018_10) with NCBI BLAST+. In the case of hits (E-value < 1e-

03), Trinotate collected the corresponding gene ontologies (GOs). The distribution of second
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level GO terms covering at least 1% of the transcripts was visualized with WEGO [129]. We

also compiled a custom database composed of all NCBI proteins from Ancylostomatidae,

Ascarididae, Dracunculus, Filariidae, Oxyuridae, and Strongylidae (all Nematoda), as well as

from Cestoda, Digenea, Monopisthocotylea, Polyopisthocotylea, and Schistosoma (all Platyhel-

minthes), besides Acanthocephala and (other) Rotifera. After removing identical sequences,

the database contained 317,929 proteins. Following the annotation, we checked the transcripts

for mitochondrial content and confirmed P. laevis as the sequenced species by BLASTN of the

cox1 sequences.

For the detection of orthologous proteins in P. laevis and rotifers, we translated the previ-

ously published transcriptomes of the monogonont Brachionus manjavacas (GFGK01000001-

GFGK01065541; [130]) and the bdelloid Rotaria magnacalcarata (GDRE01000001-

GDRE01037876; [131]) with TransDecoder, as done before for P. laevis. Orthologous clusters

were then identified with OrthoVenn1 [132]. The according server uses a modified version of

OrthoMCL [133] for the clustering of orthologous proteins and then annotates the clusters

searching the non-redundant UniProt database with BLASTP [116]. OrthoVenn also conducts

GO term enrichment analyses for species-specific and shared groups of orthologous proteins.

In detail, we specified the metazoan database, uploaded the protein sets of P. laevis, B.manja-
vacas, and R.magnacalcarata and ran the program with default settings.

In addition, we calculated p-distances from single-copy orthologues shared across species,

which had been aligned with mafft version 7.427 and pruned from uncertain alignment sec-

tions with Gblocks version 0.91b [134]. The latter sotware was run with default settings, except

for a lowered minimum block length (5 aa). We then used MEGA X [135] to infer p-distances

from pairwise comparisons of orthologues of B.manjavacas, R.magnacalcarata, and P. laevis,
assuming a uniform substitution rate. Subsequently, we tested for equality of the p-distance

levels with the Kruskal-Wallis test in SPSS version 23.0 (IBM). Median p-distances were used

for depiction of phylogenetic trees with MEGA X (neighbor-joining).

The same single-copy clusters were independently divided by two persons into alternative

functional classes according to their OrthoVenn annotations. Transcripts with direct involve-

ment in energy metabolism (e.g. ATP synthase subunit alpha, mitochondrial, Glycogen phos-

phorylase 2, and NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial) were

grouped in one class. In the other class, we combined transcripts, for which an involvement in

energy metabolism was not evident. Transcripts with uncertain classification or lacking an

annotation were not further considered (S3 Table). The remaining coding sequences (CDSs)

were aligned and curated with pal2nal version 14.0 [136], for maintenance of codons. The

alignments generated of each class were subsequently concatenated, followed by inference of

values for p-distance and the rate ratio of non-synonymous to synonymous substitution rates

(dN/dS) with codeml in PAML v.4.9j [137] from pairwise comparisons of the concatenated

sequences.

In order to determine potential HGT from non-metazoans, translated proteins of P. laevis,
B.manjavacas, and R.magnacalcarata proteins were blasted against the protein database Uni-

ref90 with DIAMOND [138] (500 hits, E-value: 1e-05). Applying the script of Nowell et al.

[68], we defined proteins with HGT index> 30 and a consensus hit support > 90% as HGT

candidates. We excluded hits referring to acanthocephalans and (other) rotifers. Transcripts,

from which HGT candidates were derived, were finally tested for possible origin from contam-

ination with foreign tissue. For this purpose, we compared corresponding candidates with the

NCBI non-redundant database (download at 03-07-2019) with NCBI BLAST+ MEGABLAST.

We then deleted each transcript showing a hit to a non-rotifer/non-acanthocephalan sequence

with an E-value� 1e-05 and an identity� 85%. In addition, we built a BLAST database of P.
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laevisHGT candidates, in order to compare them to candidates from B.manjavacas and R.

magnacalcarata via BLASTP.

Results and discussion

Mitochondrial genomes of Pomphorhynchus laevis and other

acanthocephalans

The mitochondrial genome of P. laevis extends over 13,881 bp and contains the typical meta-

zoan set of 36 genes on the heavy strand (Fig 1). Comparison of the cox1 sequence with Gen-

Bank entries confirmed P. laevis as the sequenced species [139]. As in other Gnathifera

[140,141], thereunder acanthocephalans [56,101,102], atp8 was not annotated in the P. laevis
mitochondrial sequence. Also, gene order was very similar in P. laevis and other acanthoceph-

alan species. In particular, protein-coding genes and ribosomal rDNAs were identically

arranged in P. laevis and ten re-analyzed mitochondrial genomes from Archiacanthocephala,

Eoacanthocephala, Palaeacanthocephala, and Polyacanthocephala (see Materials and methods

for details). Differences in mitochondrial gene order between P. laevis and the other species

were confined to single tRNA genes. However, the annotation of tRNA genes is known to be

challenging, due to their higher substitution rates and sporadic degeneration of secondary

structure [51,98,142]. Nevertheless, we observed identical synteny in P. laevis and another

Fig 1. Schematic depiction of the annotated mitochondrial genome of P. laevis. The mt genome has a total length of

13,881 bp and contains 12 protein-coding genes (in alphabetical order): atp6: ATP synthase subunit 6; cox1-3:

cytochrome c oxidase subunits 1–3; cytb: cytochrome b; nd1-6: NADH dehydrogenase subunits 1–6. The genes rrnS
and rrnL code for 12S and 16S rRNA, respectively. Blue highlights tRNA genes (trn) for the twenty canonical amino

acids, which are given in one-letter code (e.g. trnA). tRNA genes for serine (trnS) and lysine (trnS) have two copies,

each. Two non-coding regions (NCR) are shown in white. The sequence is available at GenBank under accession no.

MN562482. kb, kilobase.

https://doi.org/10.1371/journal.pone.0232973.g001
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palaeacanthocephalan, L. thecatus [103], and in the archiacanthocephalans M. hirudinaceus
[78] and O. luehei [100]. We additionally detected alternative (GTG, TTG, ATT, ATA) and

incomplete stop codons (T) in protein-coding genes as previously reported for the mitochon-

drial genomes of other acanthocephalan species [56,101–103]. Moreover, with 42.5%, the GC

content of the P. laevismitogenome was in the range of other acanthocephalan and rotifer

mitogenomes [56,103,104,141,143].

Comparative analysis of the nuclear genome

Contamination of the sequenced acanthocephalan sample with host DNA should not have

played a major role in the present assembly, if it occurred at all. In fact, only 4% of the contigs

matched with sequences in the combined genome and transcriptome database of carp as the

closest phylogenetic relative of barbel [114], from which the analyzed P. laevis specimens origi-

nated (for details, see Materials and methods). However, the average alignment length of these

BLAST hits was only 75 bp (maximum 345 bp) and all hits together amounted to only 0.01%

of the total assembly size. As these hits could represent conserved sequence motives, we kept

them in the assembly (for BLAST results, see S1 Table).

With ca. 260 Mb (Table 1), the total span of the haploid genome draft of P. laevis was very

close to the GenomeScope prediction of 265–281 Mb. In further support of its near complete-

ness, more than 98% of the genomic Illumina reads and 99.4% of the Proovread-corrected Pac-

Bio reads mapped back to the genome draft. This corresponds to an average coverage of 81x

and 17x by the Illumina and PacBio reads, respectively, so that a total coverage of 100x was

approximately reached. Thereby, the current draft genome of P. laevis consists of 4,021 contigs

of 65 kb on average (contig N50 = 126,104 bp), making it one of the most coherent within the

Rotifera-Acanthocephala clade (Table 1). Only the draft genomes in Brachionus calyciflorus,

Brachionus koreanus and the Brachionus plicatilis species complex are less fragmented, but this

coincides with either a much smaller size of the assembly (51 Mb [144], 85 Mb [145]), or the

introduction of 6.41% [146] and 5.26% [147] of ambiguous bases (Ns) in the process of scaf-

folding. In contrast, we decided against such procedure and present a draft genome of P. laevis
without any N.

The total size of the P. laevis draft genome ranges within according estimates for other para-

sitic taxa such as Platyhelminthes (104–1,259 Mb) and Nematoda (42–700 Mb) [148]. The

nuclear genome size additionally meets the expectations obtained from closer phylogenetic rel-

atives of acanthocephalans, i.e., bdelloids and monogononts [67,68,146,149]. According to

flow cytometry measurements, for example, haploid genomes should have about 117–225 Mb

in the monogonont genus Brachionus (1 pg = 978 Mb; [150,151]). Compared to monogononts,

Table 1. Metrics of the P. laevis draft genome in comparison to monogonont and bdelloid rotifers.

Key parameters of assemblies Monogononta B. calyciflorus� Bdelloidea A. vaga� Acanthocephala P. laevis��

Size [bp] 129,636,934 217,933,776 260,316,196

No. contigs 9,394 41,968 4,021

Contig N50 [bp] 26,524 94,665 126,104

No. scaffolds 1,041 36,167 -

Scaffold N50 [bp] 786,674 260,259 -

GC content [%] 24.2 31.2 32.9

N content [%] 6.4 1.9 0

� according to [67,146]

��, newly generated data.

https://doi.org/10.1371/journal.pone.0232973.t001
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bdelloids seem to have larger nuclear genomes, which probably reflects their tetraploid nature

[67,152,153]. In fact, cytofluorometric measurements suggest that Adineta vaga and Philodina
roseola have haploid genomes of about 245 Mb and 1,193 Mb, respectively (1 pg = 978 Mb;

[151,154]). However, more revealing should be the comparison with size estimates of haploid

genomes according to de novo assemblies, which span 129.6 Mb in B. calyciflorus and 51–115

Mb in the B. plicatilis species complex [144,146,149]. The corresponding estimates for bdel-

loids are in a higher range once more, with up to 217.9 Mb (A. vaga), 201.3 Mb (Adineta ric-
ciae), 295.4 Mb (Rotaria macrura), and 337.6 Mb (R.magnacalcarata) [67,68]. Thus, the size

of the P. laevis genome is within the limits of bdelloid genomes, while monogononts have

smaller genomes. Likewise, the GC content of the P. laevis draft genome (32.9%) is very similar

to corresponding values in the bdelloids A. vaga (31.2%), A. ricciae (35.6%), R.magnacalcarata
(31.9%), and R.macrura (32.6%), while GC contents are clearly lower in the monogononts B.

calyciflorus (24.2%) and B. plicatilis (26.4%) [67,68,146,149]. As long as corresponding findings

for other gnathiferan taxa like Gnathostomulida and Micrognathozoa [54,155,156] are not

available, ancestral conditions remain uncertain. However, current evidence does not contra-

dict a closer phylogenetic relationship of bdelloids with acanthocephalans than with monogo-

nonts [49–52].

Repeats, tRNA genes, and the non-repetitive portion in nuclear genomes

With 63%, repetitive elements recognized by RepeatMasker make up a larger part of the draft

genome in P. laevis than published for traditional rotifer taxa. Thus, RepeatMasker estimates

for the repetitive portion in de novo assemblies of monogonont and bdelloid genomes do not

exceed 28% [68,146]. This discrepancy could reflect an overestimation of the repetitive portion

in the P. laevis genome, and indeed GenomeScope gives a lower range between 45% and 51%.

However, there may also be an underestimation in respect to the nuclear genomes of tradi-

tional rotifer taxa (see also [157]). In support of such a possibility, dnaPipeTE detected a repeat

portion of up to 44% in Brachionus asplanchnoidis [144]. In any way, the non-repetitive por-

tion of the P. laevis draft genome spans ca. 35%. This corresponds to 96.3 Mb, which is close to

the size of the non-repetitive part in nuclear genomes of traditional rotifers as exemplified by

about 102.3 Mb in B. calyciflorus [146]. Thus, variation of nuclear genome size in the Rotifera-

Acanthocephala clade appears to be mainly due to the plasticity of the repetitive fraction.

A greater repetitive fraction in the nuclear genome of P. laevis is also evident in respect to

protein-coding genes. In detail, 27% fewer Trinity transcripts mapped to the masked genome

than to the unmasked one (for GMAP results, see S4 Table). This corresponds to 11,787 tran-

scripts, of which the Trinotate v3.1.1.1 pipeline (via BLASTX or BLASTP) annotated 1,207.

The majority of the annotated transcripts, about 57%, referred to transposon activity, for

which repetition is to be expected, such as RNA-directed DNA polymerase from mobile ele-

ment jockey and Retrovirus-related polyprotein from transposon Gypsy (S5 Table). According

to RepeatMasker, Long Interspersed Nuclear Elements (LINEs) occupied the largest fraction

(36.01%) amongst the repetitive elements in the P. laevis genome (S.3). This was followed by

unclassified repeats (16.20%), Long Terminal Repeats (LTRs: 5.54%), DNA transposons

(2.94%), and Short Interspersed Nuclear Elements (SINEs: 0.38%). The low proportion of

SINEs in the P. laevis genome is especially surprising considering the proven expression of

RNA-directed DNA polymerases (for Trinotate annotation, see S7 Table). On the other hand,

low representation of SINEs seems to be common in the Rotifera-Acanthocephala clade. In B.

calyciflorus and A. vaga, for example, SINEs make up only 0.00–0.08% of the repeats [144,146].

Using tRNAscan-SE, we additionally detected 551 tRNA-coding sequences in the P. laevis
draft genome, 29 of which were classified as pseudogenes (S6 Table). Most tRNA genes in the
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P. laevis genome transferred cysteine, followed by tRNAs for glutamine and glycine. Fre-

quently, several copies of the same tRNA gene occurred in tandem, with only small distances

between them. For instance, one contig (Contig3391) contained 57 cysteine tRNA genes sepa-

rated by 76 to 1,253 base pairs (S6 Table). In any case, the number of tRNA genes in P. laevis
was within the range of 543–984 tRNA genes reported for bdelloids [68]. In contrast, the corre-

sponding count (1,063 tRNA genes) in the monogonont B. calyciflorus was clearly higher

[146]. Thus, bdelloids are more similar to acanthocephalans in terms of the number of tRNA

genes than to monogononts, just as mentioned above in respect to genome size and mitochon-

drial GC content.

Transcriptome and proteome analyses

The Trinity assembly contained 43,075 transcript contigs, 64 of which had MEGABLAST hits

(E-value� 1e-05,� 85%) to the common carp database. However, the alignments had an

average length of only 69 bp (maximum 611 bp), and at least some of them could be related to

HGT events. Once more, we did not delete sequences with matches to carp but reported them

(S2 Table). But we have again filtered against potential origin from other organisms, including

humans (for details, see Materials and methods). This reduced the number of remaining con-

tigs to 42,888, totaling 33,776,651 bp (Table 2). Trinity grouped these into 28,798 gene clusters

based on common sequence contents. The lower number of Trinity clusters probably reflects

the occurrence of alternative splicing and paralogues in P. laevis. In any case, the combination

of RNAs from two adult males, two adult females, and two juveniles obviously led to a near-to

complete transcriptome assembly. In addition, 91% of the reads could be mapped to the draft

genome, when applying a quality cutoff of 90% identity and 50% query coverage. The percent-

age was even 96%, when GMAP was run with default settings (S4 Table).

In support of the occurrence of alternative splicing, the P. laevis transcript contigs, which

had passed the filtering steps, coded for 35,622 proteins, according to TransDecoder (minimal

size: 30 aa). This roughly corresponds to the 35,161 and 35,747 proteins, which the same pipe-

line detected in the transcriptome drafts of the monogonont B.manjavacas [130] and the bdel-

loid R.magnacalcarata [131], respectively. Nevertheless, the difference was smaller between

the bdelloid and P. laevis than between the acanthocephalan and the monogonont, which

agrees with the phylogeny [43,50–52]. We additionally found the total extension of the prote-

ome to be approximated between the bdelloid and P. laevis, while it was clearly lower in the

Table 2. Transcriptome and proteome metrics of P. laevis and monogonont and bdelloid rotifers.

Key parameters of assemblies Monogononta B. manjavacas� Bdelloidea R. magnacalcarata� Acanthocephala P. laevis��

Transcriptome length [bp] 40,097,144 30,999,243 33,776,651

No. of contigs 65,541 37,876 42,888

Contig N50 [bp] 786 1,081 1,374

Mean contig length [bp] 612 818 788

Longest contig [bp] 12,116 6,238 15,909

Shortest contig [bp] 200 200 200

No. of proteins 35,747 35,161 35,622

Proteome lengths [aa] 5,789,655 7,539,034 7,059,720

Mean protein length [aa] 162 214 198

No. of OrthoVenn1 clusters (included proteins %) 6,068 (28.7%) 8,768 (58.8%) 6,546 (58.0%)

� re-analyzed data [130,131]

�� newly generated data.

https://doi.org/10.1371/journal.pone.0232973.t002
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monogonont. Also, the average protein length in the bdelloid R.magnacalcarata and the acan-

thocephalan P. laevis was similar (Table 2).

Metazoan genes in acanthocephalan evolution

About 30% of the P. laevis transcripts were found to have counterparts in a custom database,

in which mainly other parasitic taxa and rotifers were represented (see Materials and meth-

ods). In addition, 29% of our transcriptome data could be matched to the Swiss-Prot database

by Trinotate, whereby 28% could be functionally annotated (S7 Table). Thus, about one third

of the P. laevis proteins should be of higher phyletic age at minimum. Compared to this, the

proportion of particularly important metazoan genes conserved in P. laevis is higher. In detail,

61% of the genes (including fragmented ones: 6.9%) contained in the BUSCO gene set for

Metazoa were represented in the P. laevis draft genome. But this percentage was probably an

underestimation (compare [112]), due to the non-recognition of highly derived genes. In line

with this, BUSCO recognized a much higher number of 739 metazoan genes (including frag-

mented ones: 3.1%), corresponding to 75.5%, when operated with translated transcripts,

which display the non-synonymous nucleotide substitutions only. Still, 15 genes were exclu-

sively determined in the draft genome. These genes might have been expressed at a very low

level in the analyzed P. laevis specimens. In any case, a total of 754 (739+15) and thus 77% of

the functionally important metazoan genes were found conserved in P. laevis.
The reduced number of usually conserved metazoan genes presumably reflects gene loss on

the lineage to P. laevis, as it is common in parasite evolution [63,158–160]. This is indeed very

likely considering that almost identical percentages of metazoan genes (74% to 77%) were

detected by BUSCO in the genome assemblies of four parasitic trematodes [161]. Although these

counts refer to the subset of usually conserved metazoan genes, the relation could apply to the

entire gene repertoire, as illustrated again by other taxa. Thus, the parasitic nematode Trichinella
spiralis has about 22% less genes than the free-living model Caenorhabditis elegans [162]. In acan-

thocephalans, a reduced gene repertoire might reflect their simplified anatomy, as exemplified by

the lacking digestive tract [3,50,163]. Genes controlling the differentiation of the digestive tract in

other taxa should thus be candidates for gene loss in acanthocephalans. In line with the postulate,

anterior class hox genes (paralogues of hox1 and hox2), which control the development of the sto-

matogastric nervous system in other species of Gnathifera and Lophotrochozoa [155,164], could

not be detected, neither in the transcriptome nor in the draft genome of P. laevis. Still, some of the

genes might not have been detected in P. laevis as well as other parasites.

BUSCO classified 5.3% of the metazoan genes in the genome assembly of P. laevis as dupli-

cated. This is close to the about 3% of duplicated metazoan BUSCO genes published before for

monogonont rotifers like B. calyciflorus and B. plicatilis [146,147]. However, BUSCO classified

18.4% of the expected metazoan genes as duplicated, when run on the transcriptome-derived

proteome of P. laevis. Different gene structures might have hampered the recognition of para-

logues in the P. laevis genome. More likely, the presence of isoforms in the proteome led to an

overestimation of the proportion of duplicates. Either way, also the increased value of 18.4% is

much lower than corresponding estimates for bdelloids. In the A. vaga draft genome, for

example, 73.4% of the metazoan genes were estimated to be duplicated, probably reflecting a

tetraploid state [67,165]. Correspondingly, tetraploidy should have evolved on the bdelloid

stem lineage or within bdelloids.

Orthologous proteins in Monogononta, Bdelloidea, and Acanthocephala

Based on approximately 35,000–36,000 proteins per species, OrthoVenn generated similar

numbers of protein clusters for B.manjavacas (ca. 6,000) and P. laevis (ca. 6,500), while the

PLOS ONE The genome, transcriptome, and proteome of the fish parasite Pomphorhynchus laevis (Acanthocephala)

PLOS ONE | https://doi.org/10.1371/journal.pone.0232973 June 23, 2020 12 / 30

https://doi.org/10.1371/journal.pone.0232973


corresponding number was increased in the bdelloid R.magnacalcarata (ca. 8,800) (Table 2).

On the other hand, with slightly less than 60%, almost the same proportion of proteins was

clustered in R.magnacalcarata and P. laevis, while the corresponding portion was of about

half as large in B.manjavacas. In fact, there were 42% more clusters in the acanthocephalan-

bdelloid than in the acanthocephalan-monogonont comparison. A likewise pattern was repro-

duced in an additional group of three species (S1 Text) and presumably reflects the increased

gene content of bdelloids as tetraploids (see previous section) and their closer phylogenetic

relationship to acanthocephalans than to monogononts [43,50–52]. Also, the higher number

of clusters that P. laevis shares with R.magnacalcarata than with B.manjavacas (Fig 2) is con-

sistent with the fact that Eurotatoria (Monogononta+Bdelloidea) is probably a paraphyletic

taxon [43,50–56]. At the same time, the number of clusters shared by P. laevis with any of the

(other) rotifers is lower than between the monogonont and the bdelloid. But such a pattern is

actually to be expected considering that the coding sequences and the gene repertoire should

be most derived in acanthocephalans.

The protein clusters shared by all three species contained 752 clusters containing one ortho-

logue from every species. After removal of highly variable sections, 750 of these single-copy

clusters were used for evolutionary analyses. The corresponding p-distances were highest in

the species pair P. laevis-B.manjavacas (median: 0.519), closely followed by the pair P. laevis-

Fig 2. Venn diagram of orthologous protein clusters in the B. manjavacas (Monogononta), R. magnacalcarata
(Bdelloidea), and P. laevis (Acanthocephala). The higher number of clusters shared between R.magnacalcarata and

P. laevis than between the latter species and B.manjavacas is in accordance with the closer relationship of

acanthocephalans to bdelloids than to monogononts (see main text). Also, the overall greater similarity of the

monogonont and bdelloid proteomes to each other than to the more strongly derived P. laevis proteome is evident

(compare Fig 3). The analysis was conducted with OrthoVenn1 using transcript-derived proteomes of the respective

species. See S1 Text for an analogous analysis in an alternative species triple (no. 2). Transcriptomes of the

monogonont and bdelloid were re-analyzed [130,131], while corresponding data for the acanthocephalan were newly

generated in this study.

https://doi.org/10.1371/journal.pone.0232973.g002
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R.magnacalcarata (median: 0.511). Compared to this, the p-distances were clearly decreased,

when inferred from orthologues of B.manjavacas and R.magnacalcarata (median: 0.420).

Accordingly, Kruskal-Wallis test rejected the null hypothesis of equality with high significance

(p< 0.000; Fig 3A). Neighbor-joining trees, built from median p-distances, illustrated that p-

distances were primarily increased on the acanthocephalan lineage, while they were about the

same for the other two lineages (Fig 3B and 3C). Thus, CDSs underwent significant reorgani-

zation in acanthocephalan evolution in particular, which accords with changes in acantho-

cephalan morphology, lifestyle, and physiology (e.g. [11,85,166]).

Enrichment analysis was revealing in another respect. Thus, seven out of thirteen GOs

enriched in the protein clusters shared by the monogonont B. plicatilis and the acanthocepha-

lan P. laevis indicated an involvement in dosage compensation of gene expression, while no

such terms were found enriched in any of the protein clusters involving the bdelloid R.magna-
calcarata (S8 Table). In fact, dosage compensation should be of particular importance in

monogononts and acanthocephalans because these two form males and females [57,167].

While males are obligatory in acanthocephalans, they are not in monogononts. Instead, female

monogononts react with the production of haploid males upon certain stimuli, followed by

sexual reproduction and the formation of resting eggs [71]. In contrast, the relevance of dosage

compensation, if it occurs, would be uncertain in bdelloids, for which no males have been

reported and which are commonly believed to reproduce strictly parthenogenetic [57,67–69].

Fig 3. Pairwise comparisons of 750 orthologous single copy proteins between B. manjavacas (Monogononta), R.

magnacalcarata (Bdelloidea), and P. laevis (Acanthocephala). A) Box plot diagram showing overall higher p-

distances between orthologues from the acanthocephalan and any of the rotifers than between rotifer orthologues. The

difference across all three pairs of comparison is significant at the level of p< 0.000 (���), as revealed by Kruskal-

Wallis test (SPSS v. 23.0, IBM). Lower and upper boundaries of boxes with blue filling indicate 25th and 75th

percentiles. Red horizontal bars correspond to median p-distances. Whiskers illustrate levels of the lowest and highest

p-distance for each pair of comparison. Unrooted (B) and rooted (C) neighbor-joining tree demonstrating that

acanthocephalan proteins evolved at increased rates. The phylogeny was drawn with MEGA X from median p-

distances. Branch lengths give exchanges per amino acid. Transcriptomes of the monogonont and bdelloid were re-

analyzed [130,131], while corresponding data for the acanthocephalan were newly generated in this study.

https://doi.org/10.1371/journal.pone.0232973.g003
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The generally increased complexity of the monogonont life history seems also to have left an

imprint in the amount of GOs, which OrthoVenn found to be enriched in the clusters specific

for B.manjavacas (S8 Table).

HGT analysis

Approximately 35%, 36%, and 53% of the proteins in P. laevis, B.manjavacas, and R.magna-
calcarata, respectively, were scrutinized for potential HGT. Following other investigators

[68,131,168], we especially focused on potential HGT events from a non-metazoan. In P. laevis,
the analytical pipeline described in the Materials and methods led to the 1,729 proteins (4.8%),

which could be encoded by genes originating from non-metazoans. The application of the

same pipeline to R.magnacalcarata resulted in 2,251 proteins (6.4%) that might be encoded by

HGT candidates. Eyres et al. [131] calculated a very similar HGT rate of 5.7% for all transcripts

of R.magnacalcarata, applying a slightly different approach. The same study reports even

higher values of 7.0% and 7.6% for the genus Rotaria, which could reflect genome fragmenta-

tion and re-assembly in the course of repeated anhydrobiosis-hydrobiosis cycles [67]. In any

case, the proportions of HGT candidates in bdelloids and P. laevis were clearly higher than in

the monogonont B.manjavacas, where only 345 or 1% of all proteins were HGT candidates.

Thus, the bdelloid and acanthocephalan were again more similar to each other than to the

monogonont.

HGT from a metazoan cannot be ruled out in acanthocephalans, and it may even be

regarded likely, considering that their close association with mandibulate and gnathostome

hosts [1,3,50]. However, distinguishing whether the sequence similarity between metazoan

genes is due to orthology or HGT is generally difficult. In any case, we found no evidence of an

increased occurrence of HGT events from amphipod or teleost sequences in acanthocepha-

lans. Rather, MEGABLAST comparison of protein sequences against the UniRef90 database

(DIAMOND) led to similar amounts of best bit-score hits with either an amphipod or a teleost

sequence, regardless of whether the query sequences originated from P. laevis or R.magnacal-
carata. Consequently, the parasitic lifestyle seems not to promote the incorporation of host

DNA into the genome of acanthocephalans, at least not in relation to bdelloids.

The orange coloration of the Pomphorhynchus tegument

The tegument or epidermis makes up the major portion of the acanthocephalan body wall in

acanthocephalans [169,170], and it is orange in P. laevis and its congeners. But metazoans usu-

ally do not possess genes for the biosynthesis of carotenoids, which likely account for the color-

ation of the P. laevis tegument. If such genes exist, they are supposedly acquired by gene

transfer [171]. However, we did not find carotinoid biosynthesis genes amongst the HGT can-

didates in the P. laevis transcriptome. Nevertheless, we noticed GO terms relating to rhodopsin

biosynthesis and ample connections to transmembrane receptors of the rhodopsin family in

the Trinotate annotation (S7 Table). In addition, the GO terms of two of the OrthoVenn sin-

gle-copy clusters referred to rhodopsin-specific enzymes, which were thus transcribed in the

analyzed P. laevis specimens as well (S3 Table). Yet, rhodopsin contains the chromophore

11-cis-retinal, which is a carotinoid and to which there were also numerous connections in the

Trinotate annotation (S7 Table). Thus, an enzymatic machinery for carotinoid processing

apparently exists in acanthocephalans. A role of carotinoids in the acanthocephalan metabo-

lism is additionally reflected by the fact that retinal is a derivative of vitamin A, which acantho-

cephalans are known to take up via surface [172]. Probably, the uptake of vitamin A and

carotinoids happens along with lipids [15,173–175], which play a significant role in the nutri-

tion of acanthocephalans, including P. laevis (see next section). However, if the orange
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coloration itself confers an adaptive benefit to the worms inside their gnathostome hosts

remains elusive. A function as anti-oxidants would be conceivable. In contrast, orange colora-

tion could protect cystacanths from UVB radiation and potentially increases their chances for

host-transfer [176,177].

The complex energy strategy of acanthocephalans

The above demonstrated reorganization of the entire acanthocephalan proteome also covered

the energy metabolism. Thus, pairwise comparisons involving P. laevis led to higher p-dis-

tances and dN/dS values than pairwise comparisons between the monogonont and bdelloid.

Notably, this was the case for 43 concatenated single-copy transcripts with special relevance

for energy metabolism and also for their 532 without such commitment (Table 3). More

revealing than the absolute values was the extent to which they differed, depending on the

inclusion or exclusion of P. laevis in pairwise comparisons: In the case of energy-related genes,

the respective factor was persistently higher for transcripts with energy-related GOs than for

transcripts without such GOs (see parentheses in Table 3). Thus, energy-related transcripts

and the genes behind did not only accumulate, in relative terms, particularly many nucleotide

substitutions on the lineage to P. laevis. Rather, these changes included disproportionally

many non-synonymous exchanges (dN). This suggests an increased proportion of adaptively

evolving amino acid positions in the energy-related proteome of acanthocephalans.

A closer look for the GOs underlined the importance of energy metabolism for P. laevis.
Thus, GOs relating to catabolism and metabolism were clearly amongst the most abundant

ones (see orange bars in Fig 4). The same chart shows numerous transcripts associated with

the GO term “binding”. In the case of an acanthocephalans like P. laevis, these could include a

lot of transcripts involved in nutrient uptake via the surface.

Inspection of the individual GOs revealed additional insight in the complexity of energy

metabolism in P. laevis. Amongst others, Trinotate associated many P. laevis transcripts

directly (without parent terms) with corresponding GO terms (S7 Table), including genes like

Fat storage-inducing transmembrane protein and Long-chain fatty acid transport protein 4. In

addition, there were many GOs referring to coenzyme A, which is commonly known to trans-

fer carbons into the Krebs cycle. Pomphorhynchus laevis should additionally be capable of lac-

tic acid fermentation (Fig 5), just as reported forMoniliformis dubius [178]. However, with

only a single P. laevis transcript pointing to such an engagement (see S7 Table: D-lactate dehy-

drogenase), the pathway should be of less significance than in platyhelminths, which have a

high number of lactate dehydrogenase genes [73]. Furthermore, the annotation of acetyl-coen-

zyme A synthetase could point to the excretion of acetate, which before was observed in the

archiacanthocephalan M. dubius [178] and other parasitic taxa [179].

Functional diversification through alternative splicing and neo- and subfunctionalization

of gene copies is generally considered selectively advantageous [180,181]. Accordingly, the

Table 3. Pairwise comparisons of concatenated transcripts sorted after their function.

Protein class P. laevis vs. R. magnacalcarata P. laevis vs. B. manjavacas B. manjavacas vs. R. magnacalcarata
Energy-related [p-distance] 0.465 (1.275) 0.468 (1.283) 0.365 (not applicable)

Not energy-related [p-distance] 0.493 (1.218) 0.497 (1.229) 0.405 (not applicable)

Energy-related [dN/dS] 0.004 (1.333) 0.005 (1.667) 0.003 (not applicable)

Not energy-related [dN/dS] 0.005 (1.250) 0.006 (1.500) 0.004 (not applicable)

Values in parenthesis give fold-changes in relation to the species pair in the right column. dN/dS, rate ratio of non-synonymous to synonymous substitution rates.

https://doi.org/10.1371/journal.pone.0232973.t003
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investigation of protein clusters with regard to functional characteristics should be particularly

elucidating. In line with this postulate, all nine GO terms enriched in the clusters that Ortho-

Venn had built from the P. laevis proteome were related to energy metabolism (S8 Table). In

contrast, only a single GOs appeared to be enriched in analogous analyses of species from

Monogononta and Bdelloidea (S8 Table: acyl-CoA dehydrogenase activity, S9 Table: none). In

the P. laevis proteome, some of the protein clusters refer to aerobic energy metabolism, sub-

sumed under cellular respiration and electron transport chain (Fig 5). With pyruvate meta-

bolic process and pyruvate dehydrogenase (NADP+) activity two additional GO terms

stressed the connection of oxygen-consuming and oxygen-independent energy metabolism. In

fact, pyruvate is well known as the product of anaerobic glycolysis, from which two carbons

are transferred into the Krebs cycle [182]. However, the educt of pyruvate production, phos-

phoenolpyruvate, in acanthocephalans also connects to fermentation [166,183,184]. The

importance of fermentation for the acanthocephalan energy metabolism was additionally

reflected by the P. laevis-specific enrichment of the GO terms acetaldehyde dehydrogenase

(acetylating) activity and alcohol dehydrogenase (NAD) activity (S8 Table). This agrees with

earlier findings that acanthocephalans ferment glycogen rapidly to ethanol [166,184,185].

Together, the different functional implications suggest that one of the acanthocephalan

responses to the challenge of reduced intestinal oxygen tension is to use the scarce oxygen for

efficient ATP production and, at the same time, to engage in less-effective fermentation

Fig 4. Functional annotation of the P. laevis proteome. Shown are second level Gene Ontology (GO) terms

represented by at least 1% of the transcripts. GO terms relating to catalytic activity and binding (Molecular Function)

and metabolic processes (Biological Process) belong to the most abundant ones. Orange highlights cata- and metabolic

functions; green denotes involvement in binding. GO term analysis was carried out with the aid of the Trinotate

pipeline. Visualization was done with WEGO and GIMP 2.8.20. The less revealing subdivision of GOs under the

parent term cellular component is not shown. cell. co., cellular component; neg. reg., negative regulation; pos. reg.,
positive regulation.

https://doi.org/10.1371/journal.pone.0232973.g004
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pathways (Fig 5). This strategy seems to be obligate to acanthocephalans, which reportedly

maintain fermentation in vitro even when oxygen is present [178,186,187].

A second answer to the challenge of the high energy demand in an oxygen-depleted envi-

ronment manifests in the acanthocephalan capability to store considerable amounts of glyco-

gen [188,178] (Fig 5). Averaged over the entire body glycogen quantities of up to 3.7% wet

weight were measured in single individuals and mean values in cohorts of worms reached up

to 2.3% [186,189]. Especially, in the tegument of acanthocephalans and especially in the mus-

culature, glycogen is deposited in such high quantities that aggregated glycogen particles are

already visible at low magnification (Fig 1 in [188]; Fig 5A in [11]). Glycogen storage also

appears to have a correlate in the acanthocephalan transcriptome of P. laevis. Thus, some of

the annotated proteins are involved in glycogen synthesis and glycogen decomposition, there-

under glycogen [starch] synthase and glycogen phosphorylase 1 (S7 Table). Notably, glycogen

phosphorylase was lately considered a potential target for the control of other parasitic hel-

minths [73]. According to the present results, the pathway could also hold targets for the con-

trol of acanthocephalans in cultures of fish [14,35,190].

A third aspect ensuring sufficient energy supply to reproduction is that thorny-headed

worms, like other intestinal parasites [7], attach themselves to the intestinal wall of the verte-

brate host. The development of the respective attachment organ, the proboscis, should be

costly, but the benefits obviously outweigh the costs [191]. In fact, the attachment causes

lesions to the intestinal wall, so that acanthocephalans can absorb nutrients and also oxygen

from the incoming blood and decaying tissue [15,192]. However, the attachment also frees the

worms from the need to counteract the risk of dislodgement through energy-consuming

movements (see [11,12,191]). In this context, it is striking that parasitic helminths were gener-

ally said to need oxygen only for their movement, but not for survival [193]. In fact, P. laevis

Fig 5.

https://doi.org/10.1371/journal.pone.0232973.g005
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can even serve as an extreme example of fixed anchoring within parasitic helminths: In the

course of anchoring, the anterior body pole reaches the outside of the intestinal wall, followed

by the formation of a subterminal dilatation, which then prevents the anterior end from sliding

back into the intestine [20]–or, as Müller (1776) put it with reference to the original investiga-

tor J. Zoega: “Ech. laevis proboscide echinata, pone apicem in sphaeram laevem dilatata.”

There is actually not much to add, except perhaps that the eponymous left-sidedness does not

seem to be a general pattern.

Conclusions

We have assembled the first draft of an acanthocephalan nuclear genome, in addition to the

first transcriptome assembly. Since sex determination in Pomphorhynchus likely follows an X0

system [194], the draft genome should be representative for both sexes of P. laevis. With a total

span of ca. 260 Mb, its size is within the range reported for bdelloids [67,68] but larger than

draft genomes in monogononts [144–147,149]. In addition, the repetitive portion of the P. lae-
vis genome (63%) is higher than corresponding values published for monogononts and bdel-

loids [68,146]. Furthermore, there was no evidence for a distinct reduction of the non-

repetitive portion in P. laevis, which one might expect for an obligate parasite. The number of

transcripts and the encoded proteins was in the range of the corresponding counts in free-liv-

ing monogonont and bdelloid rotifers [130,131]. Nevertheless, in a larger phylogenetic con-

text, the gene repertoire seems to have experienced a reduction in acanthocephalan evolution.

Thus, we detected only 73% of the expected metazoan genes in the P. laevis transcriptome, a

dimension that was reported also for parasitic helminths [161,162]. The reduction in gene rep-

ertoire was also reflected in a reduced complement of proteins regulating development, as

expected for a parasite with comparably simple body organization [159]. In fact, the reduced

digestive tract of acanthocephalans [42] coincided with the non-detection of hox1 and hox2 in

P. laevis, which in other Spiralia control the differentiation of the stomatogastric nervous sys-

tem [155,164]. Yet, if P. laevis and acanthocephalans in general really lack anterior hox genes,

the ganglion inside the receptacle might correspond to the mastax ganglia in other gnathifer-

ans [195].

The genes and proteins retained obviously experienced significant reorganization in acan-

thocephalan evolution. Thus, we found protein distances to be higher between P. laevis and

either B.manjavacas or R.magnacalcarata than between the latter two. At the same time, the

bdelloid and monogonont shared more orthologous gene clusters than each of them with the

acanthocephalan P. laevis–a pattern that we reproduced in an alternative species triple (no. 2).

Probably, the higher similarity of monogonont and bdelloid proteomes reflects that the LCAs

of both taxa as well as the species analyzed maintained the plesiomorphic condition of free-liv-

ing. In contrast, the more dissimilar proteome of P. laevis likely reflects significant changes in

acanthocephalan evolution towards an endoparasitic two-host cycle [3,7,45,50,51].

The present findings additionally suggest that HGT from non-metazoans is common in the

Rotifera-Acanthocephala clade. Thus, about 4.8–6.4% of the transcripts of R.magnacalcarata
and P. laevis were found to be of potential non-metazoan origin, while the respective rate in B.

manjavacas was only about 1%. In the stem line of Acanthocephala, elevated HGT may have

laid the grounds for the establishment of an endoparasitic lifestyle as has been similarly postu-

lated for animal parasitizing nematodes [72,73], phytopathogenic nematodes [63,74,75], and

parasitic plants from Orobanchaceae [76]. In fact, HGT might endow parasites with new capa-

bilities that open up new paths in their evolution [72,73].

In the GO annotation of genes or proteins, there were numerous indications of processing

of carotenoids, which are probably taken up via surface together with lipids [172]. In addition,

PLOS ONE The genome, transcriptome, and proteome of the fish parasite Pomphorhynchus laevis (Acanthocephala)

PLOS ONE | https://doi.org/10.1371/journal.pone.0232973 June 23, 2020 19 / 30

https://doi.org/10.1371/journal.pone.0232973


analyses of GOs together with previously published data from physiological measurements

suggest a complex energy strategy of acanthocephalans. Firstly, the scarce oxygen available in

the vertebrate digestive tract is obviously used for ATP production via respiration, but at the

same time less effective fermentation occurs. In line with this, we found transcripts related to

energy metabolism to be more derived in P. laevis than in the monogonont and bdelloid spe-

cies studied. We additionally provide first-time evidence for the existence of aerobic and

anaerobic metabolic processes in acanthocephalans (compare [166,178,183–185]). Secondly,

in accordance with histological data (Fig 1 in [188]; Fig 5A in [12]), the acanthocephalan abil-

ity to store large amounts of glycogen was reflected in the annotations. Thirdly, it is clear from

the mode of their anchoring that acanthocephalans reduce the energy required to remain

inside the digestive tract [11,12,191]. While an attachment is common in endoparasites and

also occurs in tapeworms (Platyhelminthes, Cestoda) and flukes (Platyhelminthes, Trematoda)

[7], the precise mode of attachment displayed by Pomphorhynchus specimens is quite special:

After the hooked proboscis has pierced the intestinal wall of the vertebrate host, the anterior

neck widens to a plug-like dilatation holding the worm in position [20]. This extreme form of

anchoring may have been favorable to uncover peculiarities in the energy metabolism. In any

case, it should be revealing if the patterns described will persist when including species of Sei-

sonidea, a closely related taxon living on marine crustaceans (Crustacea, Leptostraca), into the

comparison [45,49–51,196,197].
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chinorhynchus buttnerae (Acanthocephala: Neoechinorhynchidae): influence of temperature and cul-

ture media. Rev Bras Parasitol Veterinária. 2018; 27: 562–569.
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