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Abstract
Impairment of male fertility is one of the major public health 
issues worldwide. Nevertheless, genetic causes of male sub- 
and infertility can often only be suspected due to the lack of 
reliable and easy-to-use routine tests. Yet, the development 
of a marker panel is complicated by the large quantity of po-
tentially predictive markers. Actually, hundreds or even 
thousands of genes could have fertility relevance. Thus, a 
systematic method enabling a selection of the most predic-
tive markers out of the many candidates is required. As a cri-
terion for marker selection, we derived a gene-specific score, 
which we refer to as fertility relevance probability (FRP). For 
this purpose, we first categorized 2,753 testis-expressed 
genes as either candidate markers or non-candidates, ac-
cording to phenotypes in male knockout mice. In a parallel 
approach, 2,502 genes were classified as candidate markers 
or non-candidates based on phenotypes in men. Subse-
quently, we conducted logistic regression analyses with evo-
lutionary rates of genes (dN/dS), transcription levels in testis 

relative to other organs, and connectivity of the encoded 
proteins in a protein-protein interaction network as covari-
ates. In confirmation of the procedure, FRP values showed 
the expected pattern, thus being overall higher in genes 
with known relevance for fertility than in their counterparts 
without corresponding evidence. In addition, higher FRP val-
ues corresponded with an increased dysregulation of pro-
tein abundance in spermatozoa of 37 men with normal and 
38 men with impaired fertility. Present analyses resulted in a 
ranking of genes according to their probable predictive 
power as candidate markers for male fertility impairment. 
Thus, AKAP4, TNP1, DAZL, BRDT, DMRT1, SPO11, ZPBP,  
HORMAD1, and SMC1B are prime candidates toward a mark-
er panel for male fertility impairment. Additional candidate 
markers are DDX4, SHCBP1L, CCDC155, ODF1, DMRTB1, ASZ1, 
BOLL, FKBP6, SLC25A31, PRSS21, and RNF17. FRP inference ad-
ditionally provides clues for potential new markers, thereun-
der TEX37 and POU4F2. The results of our logistic regression 
analyses are freely available at the PreFer Genes website 
(https://prefer-genes.uni-mainz.de/). © 2020 S. Karger AG, Basel

T.G. and J.S. contributed equally to this work.
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Unintended childlessness affects an estimated 7–15% 
of couples during the reproductive phase, thus being a 
major public health issue [Sullivan, 2004; Ferlin et al., 
2007; Zorrilla and Yatsenko, 2013; Song et al., 2016; Car-
iati et al., 2019]. Male-factor infertility is thereby assumed 
to contribute to about half of the cases, although the ac-
tual causes remain unexplained in 30–50% of the men 
seeking medical help [Poongothai et al., 2009; Nieschlag 
et al., 2010; Massart et al., 2012; Hamada et al., 2013; 
Krausz and Riera-Escamilla, 2018; Ferlin et al., 2019]. In 
fact, the main biomarker for male sub- and infertility, se-
men analysis, cannot reliably discriminate fertile from in-
fertile individuals [Kovac et al., 2013; Bracke et al., 2018; 
Cariati et al., 2019; Panner Selvam et al., 2019], and ge-
netic analysis continues to be ineffective to date [Aston, 
2014; Coutton et al., 2015; Song et al., 2016; Mitchell et al., 
2017; Cariati et al., 2019]. On the other hand, clarification 
of the genetic causes is a prerequisite for developing a tai-
lored therapy of male fertility impairment [Sullivan, 2004; 
Bonache et al., 2012]. Yet, the long-term goal of a thera-
peutic offer is certainly desirable, regardless of alternatives 
such as in vitro fertilization and intracytoplasmic sperm 
injection [European IVF-Monitoring Consortium et al., 
2016; Behre, 2019; Neuhaus and Schlatt, 2019]. After all, 
there are still many couples whose wish for a biological 
child is not being fulfilled despite medical attention.

One way toward an improved diagnosis of male fertil-
ity impairment is the definition of markers based on a 
comprehensive literature survey [Coutton et al., 2015; 
Bracke et al., 2018; Cariati et al., 2019]. However, it is gen-
erally difficult to determine the most predictive genetic 
markers across studies. A way out can be to evaluate the 
suitability of genes or proteins as markers on the basis of 
a standardized procedure [Smith et al., 2017; Oud et al., 
2019]. The ideal marker panel would then enable a high-
ly sensitive and accurate as well as minimally invasive as-
sessment of the genetic causes of male fertility impair-
ment for a large proportion of men [Kovac et al., 2013; 
Dipresa et al., 2018; Tüttelmann et al., 2018]. Based on 
such a marker panel, less infertile men should be exposed 
to invasive diagnostics. It should also be possible through 
improved tests to estimate the fertilization potential of 
sperm for in vitro fertilization and intracytoplasmic 
sperm injection more accurately than currently possible 
[Kovac et al., 2013]. Not least, an improved genetic diag-
nostic of (idiopathic) male fertility impairment holds out 
the prospect of fewer women going through diagnosis 
and treatment.

Unfortunately, the search for a panel that conveys the 
above-mentioned benefits is additionally complicated by 

the high number of potential biomarkers for male fertil-
ity deficiencies. Thus, NCBI’s OMIM (Online Mendelian 
Inheritance in Man) already lists more than 200 genetic 
conditions associated with male infertility, spanning 
from the most common manifestations to the rarest com-
plex syndromes [Cariati et al., 2019]. However, the num-
ber of genes with potential fertility relevance is probably 
higher as illustrated by more than 6,200 proteins in sperm 
alone, which may at least partially influence male fertility 
[Shetty et al., 1999; Johnston et al., 2005; Schumacher et 
al., 2013; Amaral et al., 2014; Schumacher and Herlyn, 
2018]. Beyond that, genes expressed in spermiogenesis 
stages and somatic testicular cells will play a role in fertil-
ity maintenance – and these are many. In fact, an esti-
mated 74% of the roughly 20,000 human genes are ex-
pressed in human testis  [Zorrilla and Yatsenko, 2013; 
Carrell et al., 2016; Bracke et al., 2018]. Additional pro-
cesses such as sperm maturation and capacitation must 
also be considered in order to fully encompass the funda-
mentals of normal male fertility [Gatta et al., 2010; Fu-Jun 
and Xiao-Fang, 2012; Djureinovic et al., 2014; Intasqui et 
al., 2016; Khan et al., 2018; Ferlin et al., 2019]. It is thus 
unsurprising that the number of genes, which have been 
recognized for their potential as biomarkers for male sub- 
and infertility, is growing each year [Zorrilla and Yatsen-
ko, 2013; Carrell et al., 2016; Dipresa et al., 2018; Oud et 
al., 2019].

With the present study, we aimed at providing a metric 
basis for the selection of the most predictive fertility 
markers out of the many possible candidates. For achiev-
ing a ranking of genes, we took into account expressional, 
evolutionary, and network parameters, which together 
should give an approximation of the functional impor-
tance of an individual gene or protein. Indeed, constant 
levels of expression in a broad range of tissues can be a 
hint for enhanced functional relevance of a gene [Zhang 
and He, 2005; Larracuente et al., 2008; Eisenberg and 
Levanon, 2013]. Greater evolutionary conservation of 
coding DNAs is usually taken as another indication of es-
sentiality [Wilson et al., 1977; Jordan et al., 2002; Zhang 
and He, 2005]. According to this, increased importance 
for survival implies enhanced functional constraint and 
thus lowered substitution rates [Schumacher et al., 2017 
and references therein]. This might reflect that the en-
coded proteins have larger proportions engaging in inter-
actions with other proteins. Yet, most amino acid ex-
changes in interacting domains will have negative conse-
quences for the interplay with other proteins, and the 
underlying mutations will experience negative selection 
[e.g., Wilke and Drummond, 2010; Yang et al., 2012].  
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Correspondingly, high connectivity in a protein-protein 
interaction (PPI) network is widely accepted as addition-
al evidence for elevated relevance of a protein [Jeong et 
al., 2001; Fraser et al., 2002; Hahn and Kern, 2005; Schum-
acher and Herlyn, 2018].

The patterns described in the previous paragraph also 
apply to the majority of genes expressed in the male re-
productive tract, especially when they are involved in ba-
sic cellular processes. In turn, genes functioning in great-
er proximity to fertilization quite regularly show an in-

verse pattern [Dean et al., 2009; Ramm et al., 2009; 
Schumacher et al., 2014, 2017; see also Fouchécourt et al., 
2019]. In such cases, fewer interactants imply less func-
tional constraint, thus allowing for more substitutions 
[e.g., Kwiatkowski et al., 2020] – a phenomenon that can 
be fostered by postcopulatory forms of sexual selection 
such as sperm competition, female choice, and immune 
evasion [Gasparini and Pilastro, 2011; Løvlie et al., 2013; 
Lüke et al., 2014a; Ramm et al., 2014; Sirot et al., 2015; 
Zhou et al., 2015]. However, whatever pattern a male re-

Fig. 1. Depiction of the workflow toward a shortlist of candidate 
markers for male fertility impairment. I) Fertility relevance prob-
ability (FRP) values were inferred from logistic regression analyses 
of genes, which were sorted according to phenotypes of male 
knockout (KO) mice (dataset M) and men (dataset H). II) In a par-
allel approach, protein expression levels were determined by quan-
titative proteomic analyses of spermatozoa from cohorts of nor-
mal-fertile and impaired-fertile men. III) Downstream matching 
led to subsets M′ and H′ containing genes, for which the proteins 

showed at least 2-fold differential abundances between the co-
horts. In confirmation of the procedure, correlation analyses re-
vealed that FRP values of genes were greater the higher were the 
fold change values of the encoded proteins. At the level of indi-
vidual genes, we considered strongly varying protein levels as con-
firmatory evidence for the fertility relevance (dotted arrow shaft). 
IV) However, the selection of the most predictive candidate mark-
ers was based on elevated FRP values alone. The corresponding 
candidate markers are shortlisted in Table 5.
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productive gene may follow, evolutionary, expressional, 
and network parameters together should enable an as-
sessment of how important it is for the maintenance of 
normal male fertility. We have taken advantage of this 
fact and combined corresponding parameters with a cat-
egorization of genes according to their non-association or 
association with fertility disorders. Conducting binary lo-
gistic regressions, we obtained fertility relevance proba-
bility (FRP) values for individual genes. The validity of 
the procedure was evaluated using quantitative pro-
teomics of spermatozoa from normal-fertile and im-
paired-fertile men. Based on increased FRP values, we 
eventually selected genes that we consider to be particu-
larly informative biomarkers for male fertility impair-
ment (Fig. 1).

Materials and Methods

Network Reconstruction and Analyses
We used Cytoscape 3.4.0 for network reconstruction and anal-

ysis. First, we downloaded PPIs from IntAct, APID, MINT, DIP-
IMEx, MatrixDB, InnateDB-IMEx (all integrated in PSICQUIC, 
October 2016) as well as BioGrid (version 3.4.141). Subsequently, 
we filtered for PPIs in humans, methods that allowed the detection 
of direct binary interactions, and participation in the largest con-
nected component (LCC), i.e., the main network. The remaining 
interactants were mapped to UniProtKB and Ensembl identifiers 
(IDs) with the UniProt mapping tool, Ensembl BioMart, and man-
ually. Subsequently, we analyzed the degree of identity between 
canonical amino acid sequences with CD-Hit (sequence identity 
threshold of 95%). After removal of unmapped interactants and 
manual resolution of redundancies, the network exclusively con-
tained uniquely identifiable proteins. The corresponding 12,724 
nodes (proteins) combined to a single coherent network with 
99,113 edges (clustering coefficient = 0.083). For the sake of clar-
ity, we always use regular writing of gene names when referring to 
proteins. Thus, we use CCDC155 for the protein encoded by 
CCDC155, instead of KASH5.

Datasets and Binary Categorization of Genes for Logistic 
Regression Analyses
Dataset M: The initial categorization of proteins used pheno-

type data of male knockout mice. We retrieved the correspond-
ing information from Mouse Genome Informatics (MGI, http://
www.informatics.jax.org/) by mapping Ensembl IDs of the 
genes encoding the proteins in our network to the IDs of murine 
1-to-1 orthologues, using BioMart 86. Murine gene IDs were 
subsequently checked for entries in the phenotype database of 
MGI 6.10 (MGI_PhenotypicAllele.rpt; downloaded July 19, 
2017). For further consideration, a phenotype had to manifest in 
male mice homozygous or hemizygous for a targeted knockout. 
We regarded genes as candidate markers for male fertility im-
pairment (category 1), when their knockout associated with re-
duced sperm count, abnormal sperm morphology, and male 
sub- or infertility. However, we excluded genes if no knockout 

data existed at the time of the study or if a knockout was associ-
ated with pre-weaning mortality. We additionally eliminated 
genes if the ID for a reproductive knockout phenotype proved 
to be unstable during the study. Genes, for which knockouts as-
sociated with none of the included fertility phenotypes nor with 
any of the excluded ones were collected into the control group 
(non-candidates: category 0).

Dataset H: In a first step, we collected all fertility markers re-
ported in the following overview articles: Ferlin et al. [2006, 2007], 
Poongothai et al. [2009], Massart et al. [2012], Hamada et al. 
[2013], Kovac et al. [2013], Zorrilla and Yatsenko [2013], Aston 
[2014], Ferlin and Foresta [2014], Coutton et al. [2015], De 
Braekeleer et al. [2015], Krausz et al. [2015], Carrell et al. [2016], 
Dhanoa et al. [2016], Song et al. [2016], Mitchell et al. [2017], and 
Ray et al. [2017]. Next, we matched the candidate list with the 
genes contained in dataset M. We kept the matching entries and 
subsequently verified the fertility relevance of a gene by consulting 
the aforementioned reviews and the original studies referenced 
therein as well as NCBI’s OMIM and PubMed (search item: gene 
symbol fertil*). We included various forms of fertility impairment 
in men, thereunder complex syndromes such as hypogonadism 
(with described fertility problems or lack of puberty), sex reversal 
(XY individuals with female phenotype), testicular maldescent 
with fertility restriction, sub-/infertility despite normal sperm pa-
rameters/idiopathic cases, and primary ciliary dyskinesia/Karta-
gener syndrome with fertility restriction. For acceptance of fertil-
ity relevance of a gene (category 1), corresponding evidence from 
a single study was deemed sufficient. It was further accepted if 
fertility restriction was reported for a single man. We also accept-
ed if fertility relevance of a gene was inferred from comparison of 
disease and control cohorts, provided the statistical test was sig-
nificant. However, a gene was excluded if an association with non-
normal semen parameters was concluded without reference to a 
normal state. A gene was also eliminated if fertility relevance was 
exclusively derived from deviating expression or methylation pat-
terns. We additionally deleted a gene when a causal role in fertil-
ity maintenance was not apparent from the sources consulted, 
e.g., when fertility relevance was only postulated due to a specific 
phenotype (e.g., testicular maldescent, priapism, hypogonadism 
or primary ciliary dyskinesia). Furthermore, we disregarded a 
gene if an indel or SNP could not be unambiguously mapped to it 
via dbSNP (NCBI). Reports of a positive effect or immune infertil-
ity additionally led to deletion of a gene. All in all, a gene was ex-
cluded as a precaution in case of uncertainty regarding the catego-
rization. The candidate markers, which passed the filtering, con-
stituted category 1 of dataset H. Category 0 of dataset H contained 
genes that were not sorted into category 1 and neither were filtered 
out.

Datasets M′ and H′: These datasets were partial samples of 
the genes in datasets M and H. Prerequisite for inclusion of a 
gene into datasets M′ and H′ was the detection of the encoded 
protein in the spermatozoa of at least six normal-fertile and at 
least six impaired-fertile men by label-free protein quantifica-
tion (LFQ). In addition, protein abundances had to differ be-
tween both cohorts by at least a factor of 2. Lacking values in 
other probands were imputed with the aid of an own script as-
suming a beta distribution within 0.2 and 2.5 percentiles. For 
more details on LFQ, see below.
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Covariates for Logistic Regression Analyses
We retrieved rate ratios of non-synonymous to synonymous 

substitutions (dN/dS) between 1-to-1 orthologues of humans 
(Homo sapiens) and mouse (Mus musculus) with the aid of BioMart 
(Ensembl Genes 86). As a second parameter, we estimated the lev-
el of testis-biased expression by comparing testicular transcript 
abundance with abundances in brain, heart, and ovary. Corre-
sponding calculations used TMM-normalized RNA-Seq data 
downloaded from www.ebi.ac.uk/arrayexpress/experiments/ 
E-MTAB-2836/samples/. The human genome assembly GRCh38 
was used as reference for read mapping, which was done in accor-
dance with the script by Chen et al. [2016]. For assessing the cen-
trality of a protein in our PPI network, we collected its node degree, 
closeness centrality, betweenness centrality, minimal shortest path 
to proteins encoded by candidate markers (category 1), and the 
number of category 1 proteins as direct neighbors in the PPI net-
work (see above for network reconstruction and analysis).

Cohorts and Label-Free Quantification
The fertility of the probands was assessed on the basis of their 

parenting status and spermiograms. The latter were recorded by a 
qualified and experienced person in accordance with World 
Health Organization standards [World Health Organization, 
2010]. Ejaculates were provided by 75 male Central Europeans, of 
which 37 were normal-fertile (father of at least 1 naturally con-
ceived child in combination with normal spermiogram parame-
ters) and 38 impaired-fertile (no pregnancy despite regular, un-
protected sexual intercourse for at least 12 months, in combination 
with oligozoospermia, oligoasthenozoospermia, or oligoasthe-
noteratozoospermia). Both cohorts were similar in age structure, 
as demonstrated by median and mean values of 29 and 30 years 
(normal-fertile cohort) and 32 years each (impaired-fertile co-
hort).

Upon swim-up, spermatozoa were separated from seminal 
plasma by centrifugation for 5 min at 1,000 g. After discarding the 
plasma, cells were resuspended twice in PBS and re-pelleted by 
centrifugation at 2,000 g for 5 min, each time succeeded by discard 
of the supernatant. Washed spermatozoa were shock-frosted in 
liquid nitrogen and stored at −80°C. Following thawing on ice, the 
samples were boiled in lithium dodecyl sulfate buffer and purified 
by electrophoresis on a 4–12% gradient NOVEX gel (both Life 
Technologies). After in-gel digestion [Kappei et al., 2013], peptides 
were separated on a 30-cm reverse-phase capillary (75 μm inner 
diameter) packed with Reprosil C18 (1.9 μm; Dr. Maisch). Pep-
tides were eluted with a 4 h gradient from 5 to 60% acetonitrile at 
200 nL/min, using an Easy LC1000 HPLC system directly mount-
ed to a Q Exactive Plus mass spectrometer (Thermo Scientific). 
Raw data analysis was performed with MaxQuant (v1.5.2.8) [Cox 
and Mann, 2008] with LFQ activated and match between runs with 
a match time window of 0.7 min and alignment time window of 20 
min. For quantification, only unique peptides were used. For fur-
ther consideration, proteins had to be detected with minimum two 
peptides (one unique, one razor) per sample.

Statistical Analysis
For achieving a ranking according to the predictive power for 

male fertility impairment, we derived FRP scores for individual 
genes (datasets M and H). For doing so, we conducted binary lo-
gistic regression analyses using the forward likelihood ratio meth-
od in SPSS 23.0 v.5 (IBM). The above categorization of genes ac-

cording to previous knowledge on their fertility relevance gave the 
dependent variable. Thus, genes with fertility relevance according 
to male phenotypes belonged to category 1 (candidate markers), 
while genes without corresponding evidence belonged to category 
0 (non-candidates). Nine metric parameters giving sequence evo-
lution, the level of testis-enriched transcription, and network cen-
trality were defined as covariates. Whether or not inclusion of an 
individual covariate significantly improved the regression model, 
was tested with the Wald χ2 test implemented in SPSS. Effect size 
(f) was inferred from Nagelkerke’s R2, 
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An f value of 0.400 was taken as lower boundary for a large ef-
fect size [Cohen, 1988].  Levels of FRP were compared between 
category 0 and category 1 genes applying the Mann Whitney U 
(MWU) test in SPSS. This was done separately for datasets M, M′, 
H, and H′. We additionally tested for an association of FRP scores 
with absolute values of fold change of protein abundance as in-
ferred from LFQ data (datasets M′ and H′), employing Spearman's 
rank correlation (SPSS).

All tests conducted were two-sided. We transformed p values 
into false discovery rates (FDR) applying the procedure of Ben-
jamini and Hochberg [1995]. Thus, we multiplied each p value 
with the factor m/i, where i denotes the rank of an individual p 
value in the ascending order of all p values, and m is the number 
of tests performed. Thereby, we accounted for altogether 24 tests 
(2 logistic regressions with 9 χ2 tests each + 4 MWU tests + 2 Spear-
man's rank correlations). Notably, this is a conservative approach 
since, in logistic regression analyses, we were primarily interested 
in finding a summarizing model but not to identify the best predic-
tor variables for gene categorization. Furthermore, the LFQ mea-
surements were not intended to identify new biomarkers, but only 
to validate the procedure of FRP inference. Therefore, we did not 
conduct significance testing of protein expression levels.

Descriptive Approaches and Visualization
We applied arbitrary FRP threshold values of 0.600 and 0.350 

to the genes in datasets M and H, for deriving proportions of true 
and false cases. Moreover, we matched our candidate marker set 
with the compilation of housekeeping genes by Eisenberg and 
Levanon [2013]. According to the underlying concept, in a 
housekeeping gene, more than half of the exons of at least one 
RefSeq transcript have to show largely constant expression in 16 
human tissues. The matching was carried out with gene symbols 
and Ensembl gene IDs. These were retrieved for RefSeq mRNA 
IDs in the housekeeping gene compilation, using the data min-
ing tool BioMart (Human genes: GRCh38.p13 in Ensembl Genes 
99). For visualization of FRP distributions in datasets M, M′, H, 
and H′, we generated violin plots with the aid of BoxPlotR 
(http://shiny.chemgrid.org/boxplotr). Complementary network 
analysis aimed at a validation of the ranking of the 22 candidate 
markers in Table 5. Using STRING 11.0 (https://string-db.org/; 
visited May 29, 2020), we obtained confidence values for indi-
vidual edges. The edges were collected from various sources, in-
cluding text mining, experiments, databases and co-expression. 
Threshold values applied to the edges (0.150, 0.400, 0.700) cor-
responded to predefined increments for low, medium, and high 
confidence levels.
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Results

Genes Categorized according to Murine Knockout 
Phenotypes
Our initial dataset included 2,753 testis-expressed 

genes (dataset M) that were contained in the MGI pheno-
type database and additionally had 1-to-1 orthologues in 
our PPI network (Fig.  1). All evolutionary and expres-
sional parameters considered were available for these 
genes as well. For 2,502 of these genes, no fertility restric-
tion was observed in male mice homozygous or hemizy-
gous for the respective knockout (category 0). For the 
other 251 genes, male knockout mice were reported to be 
sub- or infertile (category 1). Logistic regression analysis 
supported the inclusion of dN/dS, transcript abundance 
in testis relative to brain and heart, and the number of 
neighbors in the PPI network into the summarizing mod-
el (FDR ≤ 0.012, each; Table 1). After successive inclusion 
of the above variables, effect size culminated in a value of 
0.434, which according to the definition applied corre-
sponds to a large effect (online suppl. Table 1; see www.

karger.com/doi/10.1159/000511117 for all online suppl. 
material). Across all proteins in dataset M, the values of 
FRP ranged from 0.005 to 0.915. Thereby, the FRP score 
of individual genes increased with stronger evolutionary 
conservation and more testis-enriched expression. The 
number of directly neighbored category 1 members in the 
PPI network was an additional positive determinant of 
FRP (Table 1). Highest FRP scores were derived for cat-
egory 1 genes, while lowest ranks were occupied by cate-
gory 0 genes. Accordingly, the FRP level was significantly 
higher in genes that were sorted into category 1 than in 
their category 0 counterparts (FDR = 0.000, MWU; Ta-
ble 2). An arbitrary FRP threshold of 0.350 confirmed the 
initial categorization in 57% of the genes. When applying 
an FRP threshold of 0.600, true cases amounted to 54% 
still (Fig. 2A).

In dataset M, 149 genes coded for proteins with at least 
2-fold differential protein abundances between sperma-
tozoa of normal- and impaired-fertile men (Fig. 1; online 
suppl. Table 2). Thereby, proteins with markedly differ-
ent abundances were encoded at higher rate by genes be-

Table 1. Covariates in the regression model fitted to testis-expressed genes in dataset M

Covariate B SE Wald Exp(B) FDR

dN/dS −2.091 0.616 11.530 0.124 0.012
RNA levels relative to brain 0.164 0.028 35.384 1.178 0.000
RNA levels relative to heart 0.174 0.025 47.784 1.190 0.000
Number of neighbored category 1 proteins in the PPI network 0.222 0.067 11.111 1.249 0.012

B, logit value; Exp(B), odds ratio; FDR, false discovery rate; PPI, protein-protein interaction; SE, standard 
error.

Table 2. Comparison of fertility relevance probability levels between gene categories 0 and 1 in datasets M, M′, 
H, and H′

Dataset Category Sample size Mean rank MWU Z FDR

M 0
1

2,502
251

1,319
1,954

169,117 −12.068 0.000

M′ 0
1

116
33

66
107

851 −4.860 0.000

H 0
1

2,474
52

1,247
2,036

24,141 −7.720 0.000

H′ 0
1

119
6

60
114

50 −3.546 0.000

FDR, false discovery rate; MWU, Mann Whitney U test.



Fertility Relevance Probability of 
Reproductive Genes

7Cytogenet Genome Res
DOI: 10.1159/000511117

longing to category 1 (13%) than category 0 (5%). We 
used the subsample of 149 proteins and their coding 
genes (dataset M′) to assess whether the FRP values were 
still grounded in empirical reality. In confirmation of this, 
the FRP score tightly correlated with the fold change of 
protein expression in the spermatozoa of our 2 study 
groups (FDR = 0.000, Spearman's rho = 0.328; Table 3). 
Thus, the more the expression of a protein was dysregu-
lated between normal-fertile and impaired-fertile men, 
the higher was the FRP value of the coding gene. Further-
more, as in dataset M, the FRP level was significantly 
higher for category 1 than category 0 genes in dataset M′ 
(FDR = 0.000, MWU test; Table 2). Yet, the focus on da-

A

C

B

D

Fig. 2. Violin plots giving the distribution of the fertility relevance 
probability (FRP) score in testis-expressed genes as derived by bi-
nary logistic regression analyses. White circles show median FRP 
values and box limits indicate 25th and 75th percentiles. Whiskers 
extend 1.5 times the interquartile range from the 25th and 75th 
percentiles. Categorization of genes as non-candidates (0) and 
candidates for male fertility relevance (1) was based on phenotypes 
in male knockout mice (turquoise: A, B) and men (lilac: C, D). 
Comparisons included the following numbers of genes (categories 
0 versus 1): A Dataset M: 2,502 versus 251. B Dataset M′: 116 versus 

33. C Dataset H: 2,474 versus 52. D Dataset H′: 119 versus 6. A–D 
FRP levels were increased for genes in category 1 relative to genes 
in category 0 in all 4 comparisons (p = 0.000, each, according to 
MWU test [***]). Percentages inside the plots refer to true cases at 
arbitrary FRP thresholds of 0.600 (A, B) and 0.350 (C, D). Restrict-
ing comparisons to genes, for which proteins showed at least 2-fold 
differential abundances between sperm of normal-fertile and im-
paired-fertile men (B, D) enhanced the discriminatory power in 
relation to the respective parental datasets (A, C).

Table 3. Correlation analyses of fertility relevance probability and 
fold change of protein abundance in spermatozoa of men with 
reduced and normal fertility

Dataset Sample size Spearman’s rho FDR

M′ 149 0.328 0.000
H′ 125 0.318 0.000

FDR, false discovery rate.
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taset M′ led to a stronger increase in category 1 than cat-
egory 0 for the FRP score, thus enhancing the discrimina-
tory power. In detail, an FRP threshold of 0.350 con-
firmed the initial categorization in 61% of the genes in 
dataset M′, while a threshold value of 0.600 implicated 
59% true cases (Fig. 2A, B).

Reproduced Findings in Genes Classified according to 
Phenotypes in Humans
We additionally inferred FRP values for a sample in 

which genes were grouped based on fertility phenotypes 
in men (Fig.  1). This dataset H contained 2,526 genes, 
whereby category 0 was larger (N = 2,474) than category 
1 (N = 52) again. The fewer category 1 members in data-
set H (relative to dataset M) reflected the deletion of genes 
in case of uncertainty (for criteria, see Materials and 
Methods). A reduced confidence in the categorization of 
genes by phenotypes of men could also be the reason for 
an overall lower FRP level in the analysis of dataset H 
(0.000–0.875), when compared to dataset M. Further-
more, betweenness centrality emerged as a new positive 
determinant of FRP in logistic regression analysis of da-
taset H (FDR = 0.040), while dN/dS was not amongst the 
predictors anymore. Also, the number of directly adja-
cent category 1 members in the PPI network was includ-
ed into the regression model again (FDR = 0.012; Ta-
ble 4). Moreover, transcription levels in testis relative to 
brain and heart were reproduced as positive covariates in 
dataset H (FDR ≤ 0.012, each; Table 4). In addition, the 
effect size (0.566) associated with the summarizing re-
gression model was again large (online suppl. Table 1). 
Furthermore, in dataset H, the upper FRP ranks were oc-
cupied by category 1 genes once more, while the lowest 
ranks were exclusively taken by category 0 genes (Fig. 2C). 
Consequently, in dataset H, FRP levels were significantly 
higher in category 1 than in category 0 (FDR = 0.000, 
MWU; Table 2), just as in dataset M. Also, application of 
the above FRP threshold values to dataset H resulted in 

similar percentages of true cases (FRPH ≥ 0.350: 59%; 
FRPH ≥ 0.600: 54%) (Fig. 2C) as reported above for data-
set M.

These findings were basically confirmed in the subset 
of 125 genes of dataset H′ (online suppl. Table 2), for 
which proteins showed at least 2-fold differential abun-
dances in the spermatozoa of normal- and impaired-fer-
tile men. Thus, in dataset H′, the level of predicted FRP 
was significantly higher in category 1 than category 0 
genes (FDR = 0.000, MWU; Table 2), and true cases made 
up a much higher proportion of category 1 (12%) than 
category 0 genes (5%). In addition, the discriminatory 
power showed the expected raise in dataset H′ as evi-
denced by percentages of true cases (FRPH′ ≥ 0.350: 66%; 
FRPH′ ≥ 0.600: 58%) (Fig. 2D). Not least, in the genes in-
cluded in dataset H′, the FRP score once more correlated 
significantly with the fold change of protein abundance 
in spermatozoa of men with different fertilities (FDR = 
0.000; Spearman's rho = 0.318; Table 3).

Selecting Candidate Markers for Male Fertility 
Impairment
Genes and proteins with increased FRPs should have 

the highest predictive potential (Fig. 1). For their selec-
tion, we applied different FRP thresholds to datasets M 
(FRPM ≥ 0.600) and H (FRPH ≥ 0.350), thus accounting 
for different levels of the parameter in both datasets. If 
genes had to take the respective thresholds in datasets M 
and H, 9 candidates remained as the most predictive 
markers for male fertility impairment: AKAP4, TNP1, 
DAZL, BRDT, DMRT1, SPO11, ZPBP, HORMAD1, and 
SMC1B (class A candidate markers in Table 5). If elevated 
FRP values in analysis of dataset M were regarded as suf-
ficient, 11 additional candidates emerged (class B candi-
date markers): DDX4, SHCBP1L, CCDC155, ODF1, 
DMRTB1, ASZ1, BOLL, FKBP6, SLC25A31, PRSS21, and 
RNF17. Besides such true positives, some category 0 genes 
might be rewarding candidates, considering their elevat-

Table 4. Covariates in the regression model fitted to testis-expressed genes in dataset H

Covariate B SE Wald Exp(B) FDR

Betweenness centrality 174.433 61.593 8.020 5,694E + 75 0.040
RNA levels relative to brain 0.170 0.052 10.704 1.185 0.012
RNA levels relative to heart 0.255 0.051 25.373 1.290 0.000
Number of neighbored category 1 proteins in the PPI network 0.809 0.243 11.140 2.247 0.012

B, logit value; Exp(B), odds ratio; FDR, false discovery rate; PPI, protein-protein interaction; SE, standard 
error.
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ed FRP values. The highest-ranking examples for such 
formally false negatives are TEX37 and POU4F2 (class C 
candidate markers). Notably, there were no housekeep-
ing genes among the 22 candidate markers in Table 5. 

Complementary PPI network analysis with STRING 
widely confirmed the above ranking of genes as candidate 
markers for male fertility impairment. Thus, when ac-
cepting low confidence for edges, all the proteins encoded 
by class A and class B candidate markers combined to a 
single network (LCC). On the contrary, proteins encoded 
by class C candidates had no interaction partner 
(Fig. 3). Raising confidence threshold via medium to high 
level  would additionally disconnect part of the class B 
proteins before first class A proteins would be expelled 
(see edge thickness in Fig. 3). In further support of their 
candidate status, out of the 22 genes listed in Table 5, five 

and thus 23% coded for proteins that showed more 
than 2-fold downregulated abundance in spermatozoa of 
impaired fertile men: AKAP4, ZPBP, ODF1, RNF17, and 
TEX37. This is above the random expectation of 5%, as 
given by 149 genes in dataset M′ out of a total of 2,753 
genes in dataset M. Lastly, post-hoc matching of the listed 
genes with external evidence confirmed the candidate 
status for nine of them (see empty rhombs and filled cir-
cles in Table 5).

Low Potential Candidates and Non-Candidates
Values approaching the lower boundary of the FRP 

interval (0,1) questioned the marker potential of genes. 
For example, FRPM values <0.030 had been calculated 
for ADRA1B, GRIA3, and CCND2 (not shown). They 
had initially been sorted into category 1 and thus may 

Table 5. Fertility relevance probability of candidate markers mentioned in the main text

Class HGNC symbol Ensembl gene ID MGI ID Associated with male fertility 
impairment

FRPM FRPH

mice humans

A AKAP4 ◊●□ ENSG00000147081 MGI:102794 Yes Yes 0.915 0.875
TNP1 ● ENSG00000118245 MGI:98,784 Yes Yes 0.901 0.843
DAZL ● ENSG00000092345 MGI:1342328 Yes Yes 0.848 0.745
BRDT ◊ ENSG00000137948 MGI:1891374 Yes Yes 0.822 0.701
DMRT1 ◊ ENSG00000137090 MGI:1354733 Yes Yes 0.779 0.577
SPO11 ◊ ENSG00000054796 MGI:1349669 Yes Yes 0.723 0.459
ZPBP ◊□ ENSG00000042813 MGI:1855701 Yes Yes 0.694 0.484
HORMAD1 ENSG00000143452 MGI:1915231 Yes Yes 0.626 0.468
SMC1B ENSG00000077935 MGI:2154049 Yes Yes 0.613 0.377

B DDX4 ● ENSG00000152670 MGI:102670 Yes 0.885
SHCBP1L ENSG00000157060 MGI:1919086 Yes 0.865
CCDC155 ◊ ENSG00000161609 MGI:2687329 Yes 0.851
ODF1 ENSG00000155087 MGI:97,424 Yes 0.844
DMRTB1 ENSG00000143006 MGI:1927125 Yes 0.820
ASZ1 ENSG00000154438 MGI:1921318 Yes 0.783
BOLL ENSG00000152430 MGI:1922638 Yes 0.752
FKBP6 ENSG00000077800 MGI:2137612 Yes 0.738
SLC25A31 ENSG00000151475 MGI:1920583 Yes 0.726
PRSS21 ENSG00000007038 MGI:1916698 Yes 0.640
RNF17 □ ENSG00000132972 MGI:1353419 Yes 0.616

C TEX37 □ ENSG00000172073 MGI:1921471 No No 0.758 0.551
POU4F2 ENSG00000151615 MGI:102524 No No 0.599 0.358

Empty rhombs (◊) indicate genes, for which at least one potentially pathogenic variant exists, as recognized in an extensive literature 
survey on the monogenic causes of impaired male fertility [Oud et al., 2019]. Filled circles (●) highlight genes known as fertility markers 
in horse, cattle, yak, and pig, as previously reported [Ma et al., 2013; Kim et al., 2015; Zhang et al., 2015; Li et al., 2019; Blommaert et al., 
2019]. Empty squares (□) give genes coding for proteins with more than 2-fold differential abundances between spermatozoa of normal- 
fertile and reduced-fertile men. FRPH/M, fertility relevance probability as inferred from logistic regression analysis of dataset H/M. 
HGNC, Human Gene Nomenclature Committee.
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formally be regarded as false positives. Such genes 
should have less predictive power as biomarkers for 
male fertility impairment than the candidates presented 
in the previous section. In any case, category 0 genes 
with lowered FRPs should have the least potential as 
fertility markers. These true negatives made up the ma-
jority of cases in all datasets, regardless of the FRP 
threshold applied (Fig. 2).

Discussion

In the present study, we carried out binary logistic re-
gression analyses to evaluate the potential of genes as 
markers for male fertility impairment. The FRP score we 
have derived in this way for individual genes can take any 
value in the interval (0,1). Depending on the number of 

decimal places, the method thus allows a finer gradation 
of genes according to their predictive power than is pos-
sible with alternative methods underlying 5 to 15 catego-
ries [Smith et al., 2017; Oud et al., 2019]. More impor-
tantly, the procedure can be modified by other combina-
tions of putative predictors and is principally applicable 
to the selection of biomarkers for other clinical manifes-
tations. Here, it should be an advantage that the method 
can be operated with basic parameters that can be re-
trieved from public databases. Hence, the comparability 
of processed data from different studies has not to be 
established in the first place, as is usually required in 
merging approaches. In addition, there is no need to 
compare the results from different studies, as is other-
wise the case with meta-analyses [Zhang et al., 2018]. 
Thus, the present procedure is comparatively straight-
forward to use.

Fig. 3. Protein-protein interaction network reconstructed from the 
22 candidate markers in Table 5. Orange circles represent class A 
candidate markers that were selected based on raised fertility rel-
evance probability values in logistic regression analyses of datasets 
H and M. For class B candidate markers (blue circles), the status 
resulted from analysis of dataset M alone. Members of class C 
(green circles) could be candidate markers, although such a status, 
to our knowledge, is not yet confirmed by corresponding pheno-

type data. Thickness of edges reflects the confidence of their pre-
diction. If the threshold is set to ≥0.150, as shown above, a total of 
87 edges connect all class A and B candidates to a largest connect-
ed component (LCC). However, the LCC does not contain class C 
members. Incremental increases in the confidence threshold 
would first disconnect class B candidates before excluding first 
class A members. Network reconstruction was performed with 
STRING 11.0 (https://string-db.org/).
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In support of the validity of the current approach, we 
found the FRP score being positively correlated with the 
extent to which protein abundances differed between 
spermatozoa of normal- and impaired-fertile men (Ta-
bles 3, 5; online suppl. Table 1). Differentially expressed 
proteins even amounted to 23% in our selection of candi-
date markers. The relevance of the candidate markers 
shortlisted in Table 5 is further underscored by consisten-
cies with follow-up studies that were not included in our 
initial categorization of genes. For example, Oud et al. 
[2019; their Table SIV] found for altogether 5 of our class 
A candidate markers (AKAP4, BRDT, DMRT1, SPO11, 
ZPBP) variants causing male fertility impairment. The 
same authors recognized fertility relevance for CCDC155, 
which was ranked as a class B candidate marker in the 
present analysis of dataset M (Table 5). In addition, pres-
ent class A member DMRT1 was evaluated as one of the 
most relevant candidate markers for azoo- and crypto-
zoospermia by Tüttelmann et al. [2018]. Beyond that, at 
least 4 of the above-mentioned class A and B candidate 
markers (AKAP4, TNP1, DAZL, DDX4) have already 
been discussed as male fertility markers in farm animals 
such as horse, cattle, and pig [Ma et al., 2013; Kim et al., 
2015; Zhang et al., 2015; Blommaert et al., 2019; Li et al., 
2019]. Not least, the frequency of confirmatory evidence 
increased toward genes with higher FRP scores (see 
graphic symbols in Table 5).

Taken together the results from regression analyses of 
datasets M and H, the genes received elevated FRP values, 
which combined testis-biased expression with higher 
connectivity in the PPI network. Although less stable, 
stronger sequence conservation seems to be another in-
dication of higher FRP (Fig. 3; Tables 1, 4). This suggests 
that the candidate markers in Table 5 should primarily be 
involved in basic cellular processes of particular impor-
tance for reproduction [e.g., Jeong et al., 2001; Zhang and 
He, 2005]. However, they should be implicated to less ex-
tent in processes taking place close to fertilization [Schum-
acher et al., 2014, 2017]. Furthermore, no housekeeping 
genes were found among the candidate markers [Eisen-
berg and Levanon, 2013]. We consider this to be a favor-
able constellation for the definition of biomarkers, the 
targeting of which by new drugs should have minimal 
side effects [Kovac et al., 2013].

Functional Implications of Candidate Markers for 
Male Fertility Impairment
A closer look at the functions of the 9 class A candidate 

markers (Table 5) underlines that they should have great-
er fertility relevance. The majority of these genes are in-

volved in precopulatory processes, while only two are bet-
ter known for postcopulatory involvements. The latter 
pair includes the highest-ranked candidate marker, 
AKAP4, which codes for A-kinase anchoring protein 4. 
The protein is a major component of the fibrous sheath 
in the sperm tail and participates in the cAMP/PKA/
AKAP4 pathway. As such, it is primarily involved in ca-
pacitation and sperm motility, but the protein has addi-
tionally been implicated in acrosome reaction [Turner et 
al., 1998; Miki et al., 2002; Hamada et al., 2013; Coutton 
et al., 2015; Rahamim Ben-Navi et al., 2016]. Yet, the sig-
nificance of AKAP4 could go beyond the maintenance of 
normal fertilization ability of spermatozoa. In fact, muta-
tions in the gene have been linked to phenotypes such as 
asthenozoospermia and teratozoospermia, suggesting a 
role in spermiogenesis [Massart et al., 2012; Coutton et 
al., 2015]. The second member of the mentioned pair with 
mainly postcopulatory significance is ZPBP. In fact, zona 
pellucida-binding protein engages in the eponymous 
binding of the spermatozoon to the zona pellucida upon 
acrosome reaction [McLeskey et al., 1998; Ito and Toshi-
mori, 2016]. Nevertheless, ZPBP seems also to be re-
quired for the formation of normally shaped spermato-
zoa, as indicated by missense and splicing mutations in 
the coding gene in almost 4% of men with abnormal 
sperm head morphology [Yatsenko et al., 2012; see also 
Ray et al., 2017].

The proteins encoded by other class A candidate mark-
ers function not as close to fertilization as AKAP4 and 
ZPBP but nevertheless are essential for reproductive 
health. For example, DMRT1 codes for doublesex and 
mab-3-related transcription factor 1, which is a regulator 
of sex determination, testis formation, and spermiogen-
esis [Raymond et al., 2000; Matson et al., 2011; Tüttel-
mann et al., 2018]. In BRDT (bromodomain testis associ-
ated), importance for spermiogenesis is reflected in par-
ticipation of the encoded protein in germ cell 
differentiation [Shang et al., 2007; Barda et al., 2012], 
probably by regulating mRNA splicing and transcrip-
tional repression [Berkovits et al., 2012]. In the case of 
DAZL (deleted in azoospermia-like form), potential rel-
evance for germ cell differentiation results from the pre-
sumed controlling influence, which the protein has on the 
cell cycle switch from mitotic to meiotic cell division. Be-
yond that, DAZL has been implicated in gamete forma-
tion and survival [Kee et al., 2009; Dhanoa et al., 2016; 
Zagore et al., 2018]. Importance for male fertility is plau-
sible also for the second-placed candidate marker, TNP1. 
The encoded protein, spermatid nuclear transition pro-
tein 1, is one of the histone substitutes in spermatids 



Greither/Schumacher/Dejung/Behre/
Zischler/Butter/Herlyn

Cytogenet Genome Res12
DOI: 10.1159/000511117

[Zhao et al., 2004; Lüke et al., 2014b], which subsequent-
ly are replaced by other candidate markers, protamines 
[Kovac et al., 2013; Zorrilla and Yatsenko, 2013; Carrell 
et al., 2016].

Reproduction relevance of another class A candidate, 
SPO11, is reflected in the initiation of meiotic double-
stranded breaks (DSBs) prior to recombination by the 
protein [Cole et al., 2010; Bloomfield, 2016]. As such, 
SPO11 acts in close linkage with proteins, which two oth-
er top-ranked candidates, HORMAD1 and SMC1B, code 
for. In fact, HORMAD1 (HORMA domain containing 1), 
participates in DSB repair [Carofiglio et al., 2018], and 
SMC1B (structural maintenance of chromosomes 1B) 
engages in chromosome segregation, chromatid cohe-
sion, and the maintenance of genome stability [Reven-
kova et al., 2001; Mannini et al., 2015]. Thus, candidate 
markers SPO11, HORMAD1, and SMC1B corroborate 
that genome and chromosome integrity are essential for 
normal spermiogenesis and male fertility [Ferlin et al., 
2007; Poongothai et al., 2009; Zorrilla and Yatsenko, 
2013; Bracke et al., 2018; Cariati et al., 2019; Cheung et al., 
2019]. Actually, this is also true for DAZL, through its 
regulatory effect on the gene coding for synaptonemal 
complex protein 3 (SYCP3) [Aarabi et al., 2006; Reynolds 
et al., 2007; see also Miyamoto et al., 2003]. The widely 
acknowledged role of subnetworks in the etiology of dis-
eases and disorders [Hayashida and Akutsu, 2016] was 
additionally reflected in the following findings: First, the 
number of neighbored category 1 members in the PPI 
network was a positive predictor of FRP (Tables 1, 4). Sec-
ond, all class A and class B candidate markers in Table 5 
combined to an LCC (Fig. 3).

It is generally known that the transferability of obser-
vations made in the mouse model to humans has its lim-
itations [Massart et al., 2012]. Nevertheless, an increased 
potential as fertility marker is also plausible for class B 
candidate markers, which were primarily selected based 
on high FRP scores in analysis of dataset M (Table 5). For 
example, DMRTB1 (DMRT like family B with proline-
rich C-terminal 1), for which the coding gene is a paralog 
of the above-mentioned DMRT1, is considered a central 
coordinator of the transition from mitosis to meiosis 
[Hilbold et al., 2019]. In line with this, loss-of-function 
mutations have been found to associate with azoospermia 
in men [Zorrilla and Yatsenko, 2013]. Another example 
illustrating the relevance of class B members for male fer-
tility is DDX4. Thus, the encoded DEAD box helicase 4 is 
presumed to promote meiotic progression and repression 
of transposon activity [Medrano et al., 2012]. In contrast 
to DMRTB1 and DDX4, the functional importance of 

other class B members manifests less at the regulatory but 
on the structural level. In particular, SHCBP1L (SHC 
binding and spindle associated 1 like) stabilizes the mei-
otic spindle apparatus [Liu et al., 2014], and CCDC155 
(coiled-coil domain containing 155) participates in the 
linkage of meiotic chromosomes to the cytoskeleton 
[Stewart and Burke, 2014]. In addition, the fibrous sheath 
component ODF1 (outer dense fiber 1) is assumed to en-
able the recoil of the bent sperm flagellum [Shao et al., 
1999]. In accordance with the above examples, the re-
maining six class B candidate markers, ASZ1, BOLL, 
FKBP6, SLC25A31, PRSS21, and RNF17 (Table  5) also 
code for proteins, which engage in spermiogenesis, sperm 
maturation, and sperm functionality [Crackower et al., 
2003; Pan et al., 2005; Brower et al., 2009; Lin et al., 2009; 
Netzel-Arnett et al., 2009; Wang et al., 2017].

Future investigations might substantiate if class C can-
didates such as TEX37 and POU4F2 are informative in 
respect to male fertility impairment (Table 5). Elevated 
FRP scores as well as functional and expressional data 
suggest their candidate status indeed. Thus, TEX37 (testis 
expressed 37) is primarily expressed in testis, where the 
protein assumedly plays a role in spermatogenesis [Yu et 
al., 2007; Khan et al., 2018]. Testicular expression is also 
known for POU4F2 (POU class 4 homeobox 2; also 
known as BRN3B), whereby the encoded transcription 
factor presumably regulates transcription of spermiogen-
esis genes [Budhram-Mahadeo et al., 2001]. But even if 
TEX37 and POU4F2 have marker potential, their predic-
tive power should be lower than for class A and class B 
candidate markers (Table 5). In addition, their potential 
fertility relevance would unlikely manifest in closer asso-
ciation with present class A and class B candidates. After 
all, TEX37 and POU4F remained isolated in the network 
reconstruction (Fig. 3).

Less Predictive Candidate Markers and Non-
Candidates
Low FRP values question the marker potential of most 

of the genes, which we had initially assigned to category 
0 (Fig. 2; Table 2). However, lowered FRPs were also in-
ferred for part of the category 1 candidate markers for 
which fertility relevance was expected. Extreme examples 
were the genes coding for ADRA1B (alpha-1-adrenergic 
receptor 1B), GRIA3 (glutamate ionotropic receptor 
AMPA type subunit 3), and CCND2 (cyclin D2), which 
all received FRP scores <0.03 according to our calcula-
tions. However, irrespective of their formal assignment to 
category 1, annotation data do not suggest special impor-
tance for male reproduction. In particular, CCND2 might 
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Fig. 4. Entry page of PreFer Genes website. The website is freely accessible at prefer-genes.uni-mainz.de and pro-
vides basic information on study outline as well as fertility relevance probability values for all genes included in 
datasets M and H.

Fig. 5. Fertility relevance probabilities of the genes contained in dataset M as reported at PreFer Genes website.
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at www.prefer-genes.uni-mainz.de (Figs. 4, 5). The short 
name of the website, PreFer Genes, refers to Prediction of 
Fertility Genes by logistic regression analysis. The acro-
nym of the website additionally reflects the goal of pro-
viding assistance, which genes should be preferred for the 
development of new applications in reproductive medi-
cine. Thereby, the website reports FRP values for all in-
vestigated genes, so that the selection of candidates can be 
made against the background of non-candidates. How-
ever, we do not claim comprehensiveness of the gene lists 
presented on the PreFer Genes website, although we con-
sulted a large set of review articles and original studies on 
the genetic causes of male fertility impairment. Thus, 
there will be more parameters and biomarkers for male 
sub- and infertility than reported herein and at www.pre-
fer-genes.uni-mainz.de.
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rather be important for maintaining female fertility [e.g., 
Chermula et al., 2019]. Moreover, GRIA3 has mainly been 
implicated in mental capability and diverse mental disor-
ders and diseases [e.g., Fang et al., 2015; Davies et al., 
2017], and ADRA1B seems to be involved in the etiology 
of psoriasis [Fan et al., 2019]. In this respect, their low 
FRP values appear to be reasonable.

Conclusion

Logistic regression analyses enabled the inference of 
FRP values for more than 2,750 genes. The procedure was 
validated in quantitative proteome analysis of altogether 
75 men with normal and impaired fertility. In particular, 
a higher FRP score of an individual gene corresponded to 
a greater fold change of protein abundance between both 
cohorts. In further support of the validity of the logistic 
regression models inferred, FRP distributions met the ex-
pectation. Thus, genes which before were known for fer-
tility relevance received higher FRP values than their 
counterparts without such association. Not least, we 
found our post-hoc ranking of 22 candidate markers 
(classes A–C) confirmed in edge confidence levels in net-
work analysis conducted on them (Fig. 3). This approach 
revealed an increasing probability of an individual candi-
date marker to participate in a functionally linked subnet-
work the higher it was ranked.

The shortlist of candidate markers in Table 5 is intend-
ed as a contribution toward a marker panel of male fertil-
ity impairment [Kovac et al., 2013; Dipresa et al., 2018; 
Tüttelmann et al., 2018]. Obviously, class A candidates 
should be particularly suitable for such application, fol-
lowed by class B members, while class C members still 
require validation. Some of these genes and proteins 
could also be useful targets for fertility treatment yet to be 
developed. In addition, the higher ranked ones might 
open up new avenues for the development of new contra-
ceptive strategies [Kaur and Prabha, 2014]. Prime candi-
date for the new contraceptive strategies could be ZPBP 
[Lin et al., 2007]. It should be an advantage here that 
ZPBP is not a housekeeping gene (Table 5). Consequent-
ly, the risk of significant side effects by a blocking agent is 
likely to be low. Expanding the contraceptive offer would 
bring added value indeed, as this may help reducing the 
estimated rate of 44% unintentional pregnancies and 
more than one million abortions per year worldwide 
[Kaur and Prabha, 2014; Bearak et al., 2018].

The results of present logistic regression analyses and 
the FRPs derived for individual genes are freely available 
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ples for proteomic analyses. J.S. planned logistic regression analy-
ses, collected all data on which regression analyses are based, con-
ducted binary logistic regression analyses, computed FRP values, 
and built the PreFer Genes website. M.D. and F.B. further pro-
cessed the samples, conceived preliminary experiments, conduct-

ed quantitative proteomics, analyzed mass spectra, imputed lack-
ing values, and determined fold change values. H.Z. participated 
in manuscript organization. H.H. supervised the study. H.H., T.G., 
and F.B. wrote the manuscript. All authors read and approved the 
final manuscript.
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